• Journal of Innovative Optical Health Sciences
  • Vol. 8, Issue 1, 1530005 (2015)
Carl J. Fisher1 and Lothar Lilge1、2、*
Author Affiliations
  • 1Department of Medical Biophysics, University of Toronto Princess Margaret Cancer Centre 101 College St, Rm. 15-710 Toronto, ON M5G 1L7
  • 2University Health Network Princess Margaret Cancer Centre 101 College St, Rm. 15-310, Toronto, ON M5G 1L7
  • show less
    DOI: 10.1142/s1793545815300050 Cite this Article
    Carl J. Fisher, Lothar Lilge. Photodynamic therapy in the treatment of intracranial gliomas: A review of current practice and considerations for future clinical directions[J]. Journal of Innovative Optical Health Sciences, 2015, 8(1): 1530005 Copy Citation Text show less
    References

    [1] M. Wong, A. Kaye, C. Hovens, "Targeting malignant glioma survival signalling to improve clinical outcomes," J. Clin. Neurosci. 14, 301–308 (2007).

    [2] D. Louis, H. Ohgaki, O. Wiestler, W. Cavenee, P. Burger, A. Jouvet, B. Scheithauer, P. Kleihues, "The 2007 WHO classification of tumours of the central nervous system," Acta Neuropathol 114, 97–109 (2007).

    [3] J. Huse, E. Holland, "Targeting brain cancer: Advances in the molecular pathology of malignant glioma and medulloblastoma," Nat. Cancer Rev. 10, 319–331 (2010).

    [4] CBTRUS, "CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in Eighteen States in 2002–2006," Central Brain Tumor Registry of the United States, Hinsdale, IL (2009).

    [5] J. Fisher, J. Schwartzbaum, M. Wrensch, J. Wiemels, "Epidemiology of brain tumors," Neurologic Clin. 25, 867–890 (2007).

    [6] R. Stupp, P. Dietrich, S. Kraljevic, A. Pica, I. Maillard, P. Maeder, R. Meuli, R. Janzer, G. Pizzolato, R. Miralbell, F. Porchet, L. Regli, N. de Tribolet, R. Miramano , S. Layvraz, "Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide," J. Clin. Oncol. 20(5), 1375–1382 (2002).

    [7] Z. Huang, L. Cheng, O. Guryanova, Q. Wu, S. Bao, "Cancer stem cells in glioblastoma — Molecular signaling and therapeutic targeting," Protein Cell 1(7), 638–655 (2010).

    [8] H. Sarin, A. Kanevsky, H. Wu, A. Sousa, C. Wilson, M. Aronova, G. Gri±ths, R. Leapman, H. Vo, "Physiologic upper limit of pore size in the bloodtumor barrier of malignant solid tumors," J. Trans. Med. 7(51) (2009), doi: 10.1186/1479-5876-7-51.

    [9] W. Banks, "Characteristics of compounds that cross the blood-brain barrier," BMC Neurol. 9, S3 (2009).

    [10] H. Davson, K. Welch, M. Segal, "Some special aspects of the blood-brain barrier," The Physiology and Pathophysiology of the Cerebrospinal Fluid, pp. 247–374, Edinburgh, Chuchill Livingstone (1987).

    [11] D. Ding, C. Kanaly, D. Bigner, T. Cummings, J. Herndon II, I. Pastan, R. Raghavan, H. Sampson, "Convection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1," J. Neurooncol. 98, 1–7 (2010).

    [12] W. Stummer, H. Ruelen, T. Meinel, U. Pichlmeier, W. Schumacher, J. Tonn, V. Rodhe, F. Oppel, B. Turowski, C. Woiciechowsky, K. Franz, T. Pietsch, "Extent of resection and survival in glioblastoma multiforme: Identification of and adjustment for bias," Neurosurgery 62(3), 564–576 (2008).

    [13] E. Laws, I. Pamey, W. Huang et al., "Survival following surgery and prognostic factors for recently diagnosed malignant glioma: Data from the Glioma Outcomes Project," J. Neurosurg. 99, 467–473 (2003).

    [14] M. Lacroix, D. Abi-Said, D. Foumey et al., "A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival," J. Neurosurg. 95, 190–198 (2001).

    [15] S. Eljamel, H. Kostron, "Photodynamic diagnosis and therapy and the brain," Methods Mol. Biol. 635, 261–280 (2010).

    [16] M. Li, H. Deng, H. Peng, Q. Wang, "Functional nanoparticles in targeting glioma diagnosis and therapies," J. Nanosci. Nanotechnol. 14(1), 415–432 (2014).

    [17] Y. Arenas, S. Monro, G. Shi, A. Mandel, S. McFarland, L. Lilge, "Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/ type II photosensitizers," Photodiagnosis Photodyn. Therapy 10(4), 615–625 (2013).

    [18] T. Foster, R. Murant, R. Bryant, R. Knox, S. Gibson, R. Hilf, "Oxygen consumption and diffusion effects in photodynamic therapy," Radiat. Res. 126(3), 296–303 (1991).

    [19] L. Grossweiner, A. Patel, J. Grossweiner, "Type I and type II mechanisms in the photosensitized lysis of phosphatidylcholine liposomes by hematoporphyrin," Photochem. Photobiol. 36(2), 159–67 (1982).

    [20] M. Niedre, M. Patterson, B. Wilson, "Direct nearinfrared luminescence detection of singlet oxygen generated by photodynamic therapy in cell in vitro and tissues in vivo," Photochem. Photobiol. 75, 382–391 (2002).

    [21] S. Lee, L. Zhu, A. Minhaj, M. Hinds, A. Ferrante, D. Vu, D. Rosen, S. Davis, T. Hasan, "Diode laser monitor for singlet molecular oxygen," Proc. SPIE 5689, 90–96 (2005).

    [22] S. Bisland, L. Lilge, A. Lin, R. Rusnov, B. Wilson, "Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: Rationale and preclinical evaluation of technical feasibility for treating malignant brain tumours," Photochem. Photobiol. 80, 22–30 (2004).

    [23] S. Bisland, L. Lilge, A. Lin, B. Wilson, "Metronomic photodynamic therapy (mPDT) for intracranial neoplasm: Physiological, biological, and dosimetry considerations," Proc. SPIE 5142, 9–17 (2003).

    [24] M. Eljamel, C. Goodman, H. Moseley, "ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: A single centre Phase III randomised controlled trial," Lasers Med. Sci. 23(4), 361–367 (2008).

    [25] S. Stylli, A. Kaye, "Photodynamic therapy of cerebral glioma — A review Part II — clinical studies," J. Clin. Neurosci. 13, 709–717 (2006).

    [26] P. Muller, B. Wilson, "Photodynamic therapy of brain tumors — A work in progress," Lasers Surg. Med. 38(5), 384–390 (2006).

    [27] H. Kostron, T. Fiegele, E. Akatuna, "Combination of Foscan mediated fluorescence guided resection and photodynamic treatment as a new therapeutic concept for malignant brain tumours," Lasers Med. 24, 285–290 (2006).

    [28] Y. Muragaki, J. Akimoto, T. Maruyama, H. Iseki, S. Ikuta, M. Nitta, K. Maebayashi, T. Saito, Y. Okada, S. Kaneko, A. Matsumura, T. Kuroiwa, K. Karasawa, Y. Nakazato, T. Kayama, "Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors," J. Neurosurg. 119(4), 845–852 (2013).

    [29] T. Beck, F. Kreck, W. Beyer, J. Merhkens, A. Obermeier, H. Stepp, W. Stummer, R. Baumgartner, "Interstisial photodynamic therapy of nonresectable malignant glioma recurrences using 5-Aminolevulinic acid induced protoporphyrin IX," Lasers Surg. Med. 39, 386–393 (2007).

    [30] A. Johansson, F. Faber, G. Kniebuehler, H. Stepp, R. Sroka, R. Egensperger, W. Beyer, F. Kreth, "Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis," Lasers Surg. Med. 45, 225–234 (2013).

    [31] B. Wilson, M. Patterson, L. Lilge, "Implicit and explicit dosimetry in photodynamic therapy: A new paradigm," Lasers Med. Sci. 12(3), 182–199 (1997).

    [32] M. Tsoukas, G. Lin, M. Lee, R. Anderson, N. Kollias, "Predictive dosimetry for threshold phototoxicity in photodynamic therapy on normal skin: Red wavelengths produce more extensive damage than blue at equal threshold doses," J. Investig. Dermatol. 108(4), 501–505 (1997).

    [33] K. Wang, J. Finlay, T. Busch, S. Hahn, T. Zhu, "Explicit dosimetry for photodynamic therapy: Macroscopic singlet oxygen modeling," J. Biophotonics 3(5–6), 304–318 (2010).

    [34] S. Eljamel, M. Petersen, R. Valentine, R. Buist, C. Goodman, H. Moseley, S. Eljamel, "Comparison of intraoperative fluorescence and MRI image guided neuronavigation in malignant brain tumours, a prospective controlled study," Photodiagnosis and Photodyn. Ther. 10(4), 356–361 (2013).

    [35] F. Hochberg, A. Pruitt, "Assumptions in the radiotherapy of glioblastoma," Neurology 30(9), 907 (1980).

    [36] L. Lilge, B. Wilson, "Photodynamic therapy of intracranial tissues: A preclinical comparative study of four different photosensitizers," J. Clin. Laser Med. Surg. 16(2), 81–91 (1998).

    [37] B. Wilson, M. Olivo, G. Singh, "Subcellular localization of photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy," Photochem. Photobiol. 65, 166–176 (1997).

    [38] W. Stummer, H. Stepp, G. Moller, A. Ehrhardt, M. Leonhard, H. Reulen, "Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue," Acta Neurochir. 140(10), 995–1000 (1998).

    [39] W. Stummer, H. Reulen, A. Novotny, H. Stepp, J. Tonn, "Fluorescence-guided resections of malignant gliomas — an overview," Acta Neurochir. Suppl. 88, 9–12 (2003).

    [40] L. Teng, M. Nakada, S. Zhao, Y. Endo, N. Furuyama, E. Nambu, I. Pyko, Y. Hayashi, J. Hamada, "Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy e±cacy," Br. J. Cancer 104(5), 798–807 (2011).

    [41] W. Kemmner, K. Wan, S. Ruttinger, B. Ebert, R. MacDonald, U. Klamm, K. Moesta, "Silencing of human ferrocheletase causes abundant protoporphyrin IX accumulation in colon cancer," FASEB J. 22, 500–509 (2008).

    [42] C. Fisher, C. Niu, B. Lai, Y. Chen, V. Kuta, L. Lilge, "Modulation of PPIX synthesis and accumulation in various normal and glioma cell lines by modification of the cellular signaling and temperature," Lasers Surg. Med. 45(7), 460–468 (2013).

    [43] A. Sottoriva, I. Spiteri, S. Piccirillo, A. Touloumis, V. Collins, J. Marioni, C. Curtis, C. Watts, S. Tavare, "Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics," Proc. Natl. Acad. Sci. USA 110(10), 4009–4014 (2013).

    [44] L. Lilge, B. Wilson, "Photodynamic therapy of intracranial tissues: A preclinical comparative study of four different photosensitizers," J. Clin. Laser Med. Surg. 16(2), 81–91 (1998).

    [45] K. Wallner, J. Galicich, G. Krol, E. Arbit, M. Malkin, "Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoms," Int. J. Radiat. Oncol. Biol. Phys. 16, 2405–1409 (1989).

    [46] M. Niedre, M. Patterson, B. Wilson, "Direct nearinfrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues," Photochem. Photobiol. 75, 382– 391 (2002).

    [47] M. Jarvi, M. Niedre, M. Patterson, B. Wilson, "Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: Current status, challenges, and future prospects," Photochem. Photobiol. 82, 1198–1210 (2006).

    [48] P. Ceroni, A. Lebedev, E. Marchi, M. Yuan, T. Esipova, G. Bergamini, D. Wilson, T. Busch, S. Vinogradov, "Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: An in vitro study," Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).

    [49] J. Jankun, L. Lilge, A. Douplik, R. Keck, M. Pestka, M. Sykudlarek, P. Stevens, R. Lee, S. Selman, "Optical characteristics of the canine prostate at 665 nm sensitized with tin etiopurpurin dichloride: Need for real-time monitoring of photodynamic therapy," J. Urol. 172, 739–743 (2004).

    [50] H. V. G. M. Sterenborg, W. Kamphorst, J. Wolbers, W. Hogervorst, "The spectral dependence of the optical properties of the human brain," 4, 221– 227 (1989).

    [51] L. Svaasand, R. Ellingsen, "Optical properties of human brain," Photochemistry and Photobiology 38, 293–299 (1983).

    [52] P. Muller, B. Wilson, "An update on the penetration depth of 630 nm light in normal and malignant human brain tissue in vivo," Phys. Med. Biol. 31, 1295–1297 (1989).

    [53] T. Farrell, B. Wilson, M. Patterson, M. Olivo, "Comparison of the in vivo photodynamic threshold dose for photofrin, mono- and tetrasulfonated aluminum phthalocyanine using a rat liver model," Photochem. Photobiol. 63, 394–399 (1998).

    [54] M. Thompson, A. Johansson, T. Johansson, S. Andersson-Engles, S. Svanberg, N. Bendsoe, K. Svanberg, "Clinical system for interstitial photodynamic therapy with combined on-line dosimetry measurements," Appl. Opt. 44, 4023–4031 (2005).

    [55] A. Rendon, J. Beck, L. Lilge, "Treatment planning using tailored and standard cylindrical light diffusers for photodynamic therapy of the prostate," Phys. Med. Biol. 53, 1131–1149 (2008).

    [56] T. Zhu, J. Finaly, S. Hahn, "Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in vivo in human prostate during motexafin lutetium-mediated photodynamic therapy," J. Photochem. Photobiol B 79, 231–241 (2005).

    [57] R. Weersink, A. Bogaards, M. Gertner, S. Davidson, K. Zhang, G. Netchev, J. Trachtenberg, B. Wilson, "Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: Clinical experience and practicalities," J. Photochem. Photobiol. B 79, 211–222 (2005).

    [58] A. Kienle, L. Lilge, M. Patterson, R. Hibst, R. Steiner, B. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coe±cients of biological tissue," Appl. Opt. 35(13), 2304–2314 (1996).

    [59] W. Lo, K. Redmond, J. Luu, P. Chow, J. Rose, L. Lilge, "Hardware acceleration of a Monte Carlo simulation for photodynamic therapy treatment planning," J. Biomed. Opt. 14(1), 014019 (2009).

    [60] N. Pomerleau-Dalcourt, R. Weersink, L. Lilge, "Partial least squares based decomposition of five spectrally overlapping factors," Appl. Spectros 59(11), 1406–1414 (2005).

    [61] A. Johansson, T. Johansson, M. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, S. Andersson- Engels, "In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors," J. Biomed. Opt. 11(3), 034029 (2006).

    [62] W. Cheong, S. Prahl, A. Welch, "A review of the optical properties of biolgical tissues," IEEE J 26, 2166–2185 (1990).

    [63] D. Roberts, P. Valdes, B. Harris, K. Fontaine, A. Hartov, X. Fan, S. Ji, S. Lollis, B. Pogue, F. Leblond, T. Tosteson, B. Wilson, K. Paulsen, "Coregistered fluorescence-enhanced tumor resection of malignant glioma: Relationships between δ-aminolevulinic acid–induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters," J. Neurosurg. 114, 595–603 (2011).

    [64] M. Akens, A. Yee, B. Wilson, S. Burch, C. Johnson, L. Lilge, S. Bisland, "Photodynamic therapy of vertebral metastases: Evaluating tumor-to-neural tissue uptake of BPD-MA and ALA-PpIX in a murine model of metastatic human breast carcinoma photochemistry and photobiology," Photochem. Photobiol. 83(5), 1034–1039 (2007).

    [65] A. Johansson, F. Kreth, W. Stummer, H. Stepp, "Interstitial photodynamic therapy of brain tumors," IEEE J. Sel. Topics Quantum Electron. 16(4), 841–853 (2010).

    [66] C. Perria, T. Capuzzo, G. Cavagnaro, R. Datti, N. Francaviglia, C. Rivano, V. Tercero, "Fast attempts at the photodynamic treatment of human gliomas," J. Neurol. Sci. 24(3–4), 119–129 (1980).

    [67] P. Muller, B. Wilson, "Photodynamic therapy of malignant brain tumours," Canadian J. Neurol. Sci. 17(2), 193–198 (1990).

    [68] P. Muller, B. Wilson, "Photodynamic therapy for recurrent supratentorial gliomas," Semin. Surg. Oncol. 11, 346–354 (1995).

    [69] T. Zhu, C. Bonnerup, V. Colussi, M. Dowell, J. Finlay, L. Lilge, T. Slowey, C. Sibata, "Absolute calibration of optical power for PDT: Report of AAPM TG140," Med. Phys. 40, 081501-1–081501- 13 (2013).

    [70] A. Kaye, G. Morstyn, D. Brownbill, "Adjuvant high-dose photoradiation therapy in the treatment of cerebral glioma: A phase 1–2 study," J. Neurosurg. 67(4), 500–505 (1987).

    [71] S. Eljamel, "Photodynamic applications in brain tumors: A comprehensive review of the literature," Photodiagnosis and Photodyn. Therapy 7, 76–85 (2010).

    [72] S. Popova, M. Bergqvist, A. Dimberg, P. Edqvist, S. Ekman, G. Hesselager, F. Ponten, A. Smits, L. Sooman, I. Alafuzo , "Subtyping of gliomas of various WHO grades by the application of immunohistochemistry," Histopathology 64(3), 365–279 (2014).

    [73] L. Cooper, D. Gutman, C. Chisolm, C. Appin, J. Kong, Y. Rong, T. Kurc, E. Van Meir, J. Saltz, C. Moreno, D. Brat, "The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma," Am. J. Pathol. 180(5), 2108–2119 (2012).

    [74] J. Heddleston, Z. Li, R. McLendon, A. Hjelmeland, J. Rich, "The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype," Cell Cycle 15(8), 3274–3284 (2009).

    [75] M. Schmidt, G. Meyer, K. Reichert, J. Cheng, H. Krouwer, K. Ozker, H. Whelan, "Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors," J. Neurooncol. 67(1–2), 201–207 (2004).

    [76] S. Garcia, M. Moretti, M. Garay, A. Batlle, "Deltaaminolevulinic acid transport through blood-brain barrier," General Pharmacol. 31(4), 579–582 (1998).

    [77] A. Marrero, T. Becker, U. Sunar, J. Morgan, D. Bellnier, "Aminolevulinic acid-photodynamic therapy combined with topically applied vascular disrupting agent vadimezan leads to enhanced antitumor responses," Photochem. Photobiol. 87(4), 910–919 (2011).

    [78] Q. Chen, M. Chopp, L. Madigan, M. Dereski, F. Hetzel, "Damage threshold of normal rat brain in photodynamic therapy," Photochem. Photobiol. 64(1), 163–167 (1996).

    [79] H. Hirschberg, F. Uzal, D. Chighvinadze,M. Zhang, Q. Peng, S. Madsen, "Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy," Lasers Surg. Med. 40, 535–542 (2008).

    [80] M. Dereski, M. Chopp, Q. Chen, F. Hetzel, "Normal brain tissue response to photodynamic therapy: Histology, vascular permeability and specific gravity," Photochem. Photobiol. 50(5), 653–657 (1989).

    [81] M. Dereski, M. Chopp, J. Garcia, F. Hetzel, "Depth measurements and histopathological characterization of photodynamic therapy generated normal brain necrosis as a function of incident optical energy dose," Photochem. Photobiol. 54(1), 109–112 (1991).

    [82] M. Seshadri, D. Bellnier, L. Vaughan, J. Spermyak, R. Mazurchuk, T. Foster, B. Henderson, "Light delivery over extended time periods enhances the effectiveness of photodynamic therapy," Clin. Cancer Res. 14(9), 2796–2805 (2008).

    [83] P. Mroz, A. Szokalska, M. Wu, W. Hamblin, "Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response," PloS One 5(12), e15194 (2010).

    [84] M. Korbelik, B. Stott, J. Sun, "Photodynamic therapy-generated vaccines: Relevance of tumour cell death expression," Br. J. Cancer 97(10), 1381– 1387 (2007).

    [85] P. Hurn, M. Macrae, "Estrogen as a neuroprotectant in stroke," J. Cereb. Blood Flow Metab. 20, 631–652 (2000).

    [86] M. Hammer, D. Krieger, "Hypothermia for acute ischemic stroke: Not just another neuroprotectant," Neurologist 9(6), 280–289 (2003).

    [87] P. Lyden, N. Wahlgren, "Mechanisms of action of neuroprotectants in stroke," J. Stroke Cerebrovasc. Dis. 9(6), 9–14 (2000).

    [88] C. Lowdell, D. Ash, I. Driver, S. Brown, "Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours," Br. J. Cancer 67(6), 1398–1403 (1993).

    [89] H. Ehrenreich, A. Kastner, K. Weissenborn, J. Streeter, S. Sperling, K. Wang, H. Worthmann, R. Hayes, N. von Ahsen, A. Kastrup, A. Jeromin, M. Herrmann, "Circulating damage marker profiles support a neuroprotective effect of erythropoietin in ischemic stroke patients," Mol. Med. 17(11–12), 1306–1310 (2011).

    [90] M. Digicaylioglu, S. Lipton, "Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kB signalling cascades," Nature 412, 641–647 (2001).

    [91] M. Brines, A. Cerami, "Emerging biological roles for erythropoietin in the nervous system," Nat. Rev. Neurosci. 6(6), 484–494 (2005).

    [92] R. Liu, A. Suzuki, Z. Guo, Y. Mizuno, T. Urabe, "Intrinsic and extrinsic erythropoietin enhances neuroprotection against ischemia and reperfusion injury in vitro," J. Neurochem. 96(4), 1101–1110 (2006).

    [93] A. Lourhmati, G. Buniatian, C. Paul, S. Verleysdonk, R. Buecheler, M. Buadze, B. Proksch, M. Schwab, C. Gleiter, L. Danielyan, "Age-dependent astroglial vulnerability to hypoxia and glutamate: The role for erythropoietin," PLoS One 8(10), e77182 (2013).

    [94] Y. Kang, M. Digicaylioglu, R. Russo, M. Kaul, C. Achim, L. Fletcher, E. Masliah, S. Lipton, "Erythropoietin plus insulin-like growth factor-I protects against neuronal damage in a murine model of human immunodeficiency virus-associated neurocognitive disorders," Ann. Neurol. 68(3), 342–352 (2010).

    [95] H. Marti, "Erythropoietin and the hypoxic brain," J. Exp. Biol. 207, 3233–3242 (2004).

    [96] M. Masuda, M. Okano, K. Yamagishi, M. Nagao, M. Ueda, R. Sasaki, "A novel site of erythropoietin production: Oxygen-dependent production in cultured rat astrocytes," J. Biol. Chem. 269, 19488– 19493 (1994).

    [97] M. Dereski, L. Madigan, M. Chopp, "The effect of hypothermia and hyperthermia on photodynamic therapy of normal brain," Neurosurgery 36(1), 141–145 (1995).

    [98] H. Zhao, J. Wang, T. Shimohata, G. Sun, M. Yenari, R. Sapolsky, G. Steinberg, "Conditions of protection by hypothermia and effects on apoptotic pathways in a rat model of permanent middle cerebral artery occlusion," J. Neurosurg. 107(3), 636–641 (2007).

    [99] P. Nowak-Sliwinska, A. Weiss, J. Beijnum, T. Wong, J. Ballini, B. Lovisa, H. van den Bergh, A. Gri±oen, "Angiostatic kinase inhibitors to sustain photodynamic angio-occlusion," J. Cellular Mol. Med. 16(7), 1553–1562 (2012).

    [100] N. Szerlip, A. Pedraza, D. Chakravarty, M. Azim, J. McGuire, Y. Fang, T. Ozawa, E. Holland, J. Huse, S. Jhanwar, M. Leversha, T. Mikkelsen, C. Brennan, "Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response," Proc. Natl. Acad. Sci. USA 109(8), 3041–3046 (2012).

    [101] G. Sarkar, G. Curran, E. Mahlum, T. Decklever, T. Wengenack, A. Blahnik, B. Hoesley, V. Lowe, J. Poduslo, R. Jenkins, "A carrier for non-covalent delivery of functional beta-galactosidase and antibodies against amyloid plaques and IgM to the brain," PLoS One 6(12), e28881 (2011).

    [102] T. Nhan, A. Burgess, E. Cho, B. Stefanovic, L. Lilge, K. Hynynen, "Drug delivery to the brain by focused ultrasound induced blood-brain barrier disruption: Quantitative evaluation of enhanced permeability of cerebral vasculature using two-photon microscopy," J. Control. Release 172(1), 274–280 (2013).

    [103] K. Takahashi, T. Hasegawa, T. Ishii, A. Suzuki, M. Nakajima, K. Uno, I. Yasuda, A. Kishi, K. Sadamoto, F. Abe, T. Tanaka, "Antitumor effect of combination of hyperthermotherapy and 5-aminolevulinic acid (ALA)," Anticancer Res. 33(7), 2861–2866 (2013).

    [104] M. Chakrabarti, N. Banik, S. Ray, "Photofrin based photodynamic therapy and mir-99a transfection inhibited FGFR3 and PI3K/AKT signaling mechanisms to control growth of human glioblastoma in vitro and in vivo," PLoS One 8(2), e55652 (2013).

    [105] X. Chen, C. Wang, L. Teng, Y. Liu, X. Chen, G. Yang, L. Wang, H. Liu, Z. Liu, D. Zhang, Y. Zhang, H. Guan, X. Li, C. Fu, B. Zhao, F. Yin, S. Zhao, "Calcitriol enhances 5-aminolevulinic acidinduced fluorescence and the effect of photodynamic therapy in human glioma," Acta Oncol. 53 (3), 405–413 (2014).

    [106] J. Cornelius, P. Slotty, M. El Khatib, A. Giannakis, B. Senger, H. Steiger, "Enhancing the effect of 5-aminolevulinic acid based photodynamic therapy in human meningioma cells," Photodiagnosis and Photodyn. Therapy 11, 1–6 (2014).

    [107] H. Li, D. Marotta, S. Kim, T. Busch, E. Wileyto, G. Zheng, "High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles," J. Biomed. Opt. 10, 41203 (2005).

    [108] T. Hasan, "Targeted PDT and its clinical relevance," Photodiagn. Photodyn. Therapy 8, 123–133 (2011).

    [109] M. del Carmen, I. Rizvi, Y. Chang, A. Moor, E. Oliva, M. Sherwood, B. Pogue, T. Hasan, "Synergism of epidermal growth factor receptortargeted immunotherapy with photodynamic treatment of ovarian cancer in vivo," J. Natl. Cancer Inst. 97, 1516–1524 (2005).

    [110] R. Heywood, H. Marcus, D. Ryan, S. Piccirillo, T. Al-Mayhani, C. Watts, "A review of the role of stem cells in the development and treatment of glioma," Acta Neurochir. 154, 951–969 (2012).

    [111] H. Zong, R. Verhaak, P. Canoll, "The cellular origin for malignant glioma and prospects for clinical advancements," Expert Rev. Mol. Diagn. 12, 383– 394 (2012).

    [112] S. Piccirillo, S. Dietz, B. Madhu, J. Gri±ths, S. Price, V. Collins, C. Watts, "Fluorescence-guided surgical sampling of glioblastoma identifies phenotypically distinct tumour-initiating cell populations in the tumour mass and margin," Br. J. Cancer 107(3), 462–468 (2012).

    [113] E. Laws, D. Cortese, J. Kinsey, R. Eagan, R. Anderson, "Photoradiation therapy in the treatment of malignant brain tumors: A phase I (feasibility) study," Neurosurgery 9(6), 972–978 (1981).

    [114] R. Wharen, R. Anderson, E. Laws, "Photoradiation therapy of brain tumors," in Neurobiology of Brain Tumors,M. Salcman, Ed., pp. 341–357, Williams & Wilkins, New York, 1991.

    [115] G. McCulloch, I. Forbes, K. See, P. Cowled, F. Jacka, A. Ward, "Phototherapy in malignant brain tumors," Progr. Clin. Biol. Res. 170, 709–717 (1984).

    [116] C. Perria, M. Carai, A. Falzoi, G. Orenesu, A. Rocca, G. Massarelli, N. Francaviglia, G. Jori, "Photodynamic therapy of malignant brain tumors: Clinical results of, di±culties with, questions about, and future prospects for the neurosurgical applications," Neurosurgery 23(5), 557–563 (1988).

    [117] H. Kostron, E. Fritsch, V. Grunert, "Photodynamic therapy of malignant brain tumours: A phase I/II trial," Br. J. Neurosurgery 2(2), 241–248 (1988).

    [118] E. Laws, R. Wharen, R. Anderson, "The treatment of brain tumors by photoradiation," in Advanced Technology in Neurosurgery, pp. 46–60, Springer- Verlag, Berlin, 1988.

    [119] S. Powers, S. Cush, D. Walstad, L. Kwock, "Stereotactic intratumoral photodynamic therapy for recurrent malignant brain tumors," Neurosurgery 29(5), 688–695 (1991).

    [120] T. Origitano, O. Reichman, "Photodynamic therapy for intracranial neoplasms: Development of an image-based computer-assisted protocol for photodynamic therapy of intracranial neoplasms," Neurosurgery 32(4), 587–595 (1993).

    [121] H. Kostron, B. Hochleitner, A. Obwegeser, M. Seiwald, "Clinical and experimental results of photodynamic therapy in neurosurgery," Proc. SPIE 2371, 126–128 (1995).

    [122] S. Kaneko, Y. Kobayashi, Y. Kohama, "Stereotactic intratumoural photodynamic therapy on malignant brain tumours," in Int. Symp. Photodynamic Therapy in Clinical Practice (1995).

    [123] M. A. Rosenthal, B. Kavar, J. S. Hill, D. J. Morgan, R. L. Nation, S. S. Stylli, R. L. Basser, S. Uren, H. Geldard, M. D. Green, S. B. Kahl, A. H. Kaye, "Phase I and pharmacokinetic study of photodynamic therapy for high-grade gliomas using a novel boronated porphyrin," J. Clin. Oncol. 19, 519–524 (2011).

    [124] S. Stylli, M. Howes, L. MacGregor, P. Rajendra, A. Kaye, "Photodynamic therapy of brain tumours: Evaluation of porphyrin uptake versus clinical outcome," J. Clin. Neurosci. 584–596 (2004).

    [125] S. S. Stylli, A. H. Kaye, L. MacGregor, M. Howes, P. Ragendra, "Photodynamic therapy of high grade glioma — long term survival," 12(4), 389– 398 (2005).

    [126] H. Kostron, E. Akatuna, T. Fiegele, "Combination of meta-tetrahydroxyphenylchlorin (FOSCAN (R))-mediated photodynamic diagnosis and photodynamic therapy for recurrent glioblastomas," J. Neurooncol. 8, 352–362 (2006).

    Carl J. Fisher, Lothar Lilge. Photodynamic therapy in the treatment of intracranial gliomas: A review of current practice and considerations for future clinical directions[J]. Journal of Innovative Optical Health Sciences, 2015, 8(1): 1530005
    Download Citation