• Laser & Optoelectronics Progress
  • Vol. 58, Issue 13, 1306006 (2021)
Zhaoyong Wang1、2、***, Bin Lu1、2, Lei Ye1、2, Kang Ying1、2, Yanguang Sun1、2, Nan Cheng3, Zhan Lu1、2, Qing Ye1、2、**, and Haiwen Cai1、2、*
Author Affiliations
  • 1Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/LOP202158.1306006 Cite this Article Set citation alerts
    Zhaoyong Wang, Bin Lu, Lei Ye, Kang Ying, Yanguang Sun, Nan Cheng, Zhan Lu, Qing Ye, Haiwen Cai. Distributed Optical Fiber Acoustic Sensing and Its Application to Seismic Wave Monitoring[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306006 Copy Citation Text show less
    References

    [1] Cai H W, Ye Q, Wang Z Y et al. Distributed optical fiber acoustic sensing technology based on coherent Rayleigh scattering[J]. Laser & Optoelectronics Progress, 57, 050001(2020).

    [2] Juarez J C, Taylor H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters[J]. Applied Optics, 46, 1968-1971(2007).

    [3] Wu H J, Li X Y, Peng Z P et al. A novel intrusion signal processing method for phase-sensitive optical time-domain reflectometry (Φ-OTDR)[J]. Proceedings of SPIE, 9157, 91575O(2014).

    [4] Huang J F, Xu T W, Feng S W et al. Multiple disturbance detection and intrusion recognition in distributed acoustic sensing[J]. Proceedings of SPIE, 10849, 108490E(2018).

    [5] Wang Z Y, Pan Z Q, Ye Q et al. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence[J]. Chinese Journal of Lasers, 42, 0405010(2015).

    [6] Tejedor J, Martins H F, Piote D et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system[J]. Journal of Lightwave Technology, 34, 4445-4453(2016).

    [7] Stajanca P, Chruscicki S, Homann T et al. Detection of leak-induced pipeline vibrations using fiber: optic distributed acoustic sensing[J]. Sensors, 18, 2841-2859(2018).

    [8] Tejedor J, Macias-Guarasa J, Martins H F et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats[J]. Sensors (Basel, Switzerland), 17, E355(2017).

    [9] Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science and Technology, 24, 085204(2013).

    [10] Peng F, Duan N, Rao Y J et al. Real-time position and speed monitoring of trains using phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 26, 2055-2057(2014).

    [11] Ferguson R J, McDonald M A D, Basto D J. Take the Eh? train: distributed acoustic sensing (DAS) of commuter trains in a Canadian city[J]. Journal of Applied Geophysics, 183, 104201(2020).

    [12] Wang Z Y, Lu B, Zheng H R et al. Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR[C](2017).

    [13] Mateeva A, Lopez J, Potters H et al. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling[J]. Geophysical Prospecting, 62, 679-692(2014).

    [14] Miller D, Parker T, Kashikar S et al. Vertical seismic profiling using a fibre-optic cable as a distributed acoustic sensor[C](2012).

    [15] Byerley G, Monk D, Aaron P et al. Time-lapse seismic monitoring of individual hydraulic frac stages using a downhole DAS array[J]. The Leading Edge, 37, 802-810(2018).

    [16] Taylor H F, Lee C E. Apparatus and method for fiber optic intrusion sensing[P].

    [17] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 37, 1735-1740(1998).

    [18] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 23, 25988-25995(2015).

    [19] Pastor-Graells J, Martins H F, Garcia-Ruiz A et al. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses[J]. Optics Express, 24, 13121-13133(2016).

    [20] Pan Z Q, Liang K Z, Zhou J et al. Interference-fading-free phase-demodulated OTDR system[J]. Proceedings of SPIE, 8421, 842129(2012).

    [21] He X G, Liu F, Qin M Z et al. Phase-sensitive optical time-domain reflectometry with heterodyne demodulation[J]. Proceedings of SPIE, 10323, 103235Q(2017).

    [22] Wang Z Y, Lu B, Ye Q et al. Recent progress in distributed fiber acoustic sensing with Φ-OTDR[J]. Sensors, 20, 6594-6620(2020).

    [23] Pan Z Q, Liang K Z, Ye Q et al. Phase-sensitive OTDR system based on digital coherent detection[C](2011).

    [24] Fang G S, Xu T W, Feng S W et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 33, 2811-2816(2015).

    [25] Wang C, Wang C, Shang Y et al. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry[J]. Optics Communications, 346, 172-177(2015).

    [26] Wang Z N, Zhang L, Wang S et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016).

    [27] Muanenda Y, Faralli S, Oton C J et al. Stable dynamic phase demodulation in a DAS based on double-pulse Φ-OTDR using homodyne demodulation and direct detection[J]. Proceedings of SPIE, 10654, 106540B(2018).

    [28] Sheng Q H, Yu Z, Lu B et al. Real-time phase-sensitive optical time-domain reflectometry signal processing system based on heterogeneous accelerated computing[J]. Chinese Journal of Lasers, 47, 0104002(2020).

    [29] Zhang X P, Ding Z W, Hong R et al. Phase sensitive optical time-domain reflective distributed optical fiber sensing technology[J]. Acta Optica Sinica, 41, 0106004(2021).

    [30] Ma H Y, Wang X X, Ma F et al. Research progress of Φ-OTDR distributed optical fiber acoustic sensor[J]. Laser & Optoelectronics Progress, 57, 130005(2020).

    [31] Wang Z, Pan Z, Fang Z et al. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source[J]. Optics Letters, 40, 5192-5195(2015).

    [32] Zhang J D, Zhu T, Zheng H et al. Breaking through the bandwidth barrier in distributed fiber vibration sensing by sub-Nyquist randomized sampling[J]. Proceedings of SPIE, 10323, 103238H(2017).

    [33] Song M P, Zhuang S W, Wang Y X. High-frequency vibration detection of phase-sensitive optical time-domain reflectometer[J]. Chinese Journal of Lasers, 47, 0506001(2020).

    [34] Lu B, Zheng H R, Wang Z Y et al. High spatial resolution Φ-OTDR with long sensing distance[C], ThE25(2018).

    [35] Chen D, Liu Q W, He Z Y. 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution[J]. Journal of Lightwave Technology, 37, 4462-4468(2019).

    [36] Feng S W, Xu T W, Huang J F et al. Sub-meter spatial resolution phase-sensitive optical time-domain reflectometry system using double interferometers[J]. Applied Sciences, 8, 1899-1907(2018).

    [37] Masoudi A, Newson T P. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution[J]. Optics Letters, 42, 290-293(2017).

    [38] Gu J F, Lu B, Yang J Q et al. High SNR Φ-OTDR based on frequency and wavelength diversity with differential vector aggregation method[J]. IEEE Photonics Journal, 12, 1-12(2020).

    [39] Pastor-Graells J, Cortés L R, Martins H F et al. 20 dB SNR enhancement in phase-sensitive OTDR using pulse stretching and recompression[J]. Proceedings of SPIE, 10323, 103230R(2017).

    [40] Martins H F, Martin-Lopez S, Corredera P et al. Distributed vibration sensing over 125 km with enhanced SNR using phi-OTDR over a URFL cavity[J]. Journal of Lightwave Technology, 33, 2628-2632(2015).

    [41] Gu J F, Lu B, Yang J Q et al. Distributed acoustic sensing based on a multi-core fiber[J]. Acta Optica Sinica, 41, 0706003(2021).

    [42] Eyal A, Gabai H, Shpatz I. Distributed acoustic sensing: How to make the best out of the Rayleigh-backscattered energy?[J]. Proceedings of SPIE, 10323, 103230I(2017).

    [43] Costa L, Martins H F, Martín-López S et al. Fully distributed optical fiber strain sensor with 10‒12 ε/√Hz sensitivity[J]. Journal of Lightwave Technology, 37, 4487-4495(2019).

    [44] Reinsch T, Thurley T, Jousset P. On the mechanical coupling of a fiber optic cable used for distributed acoustic/vibration sensing applications: a theoretical consideration[J]. Measurement Science and Technology, 28, 127003(2017).

    [45] Yan A D, Huang S, Li S et al. Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations[J]. Scientific Reports, 7, 9360(2017).

    [46] Tejedor J, Macias-Guarasa J, Martins H F et al. A Gaussian Mixture Model-Hidden Markov Model (GMM-HMM)-based fiber optic surveillance system for pipeline integrity threat detection[C], WF36(2018).

    [47] Chen J P, Wu H J, Liu X R et al. A real-time distributed deep learning approach for intelligent event recognition in long distance pipeline monitoring with DOFS[C], 290-2906(2018).

    [48] Bernard M T F, Han D, An B. Pattern recognition algorithm and software design of an optical fiber vibration signal based on Φ-optical time-domain reflectometry[J]. Applied Optics, 58, 8423-8432(2019).

    [49] Wu Y Q, Gan J L, Li Q Y et al. Distributed fiber voice sensor based on phase-sensitive optical time-domain reflectometry[J]. IEEE Photonics Journal, 7, 1-10(2015).

    [50] Masoudi A, Belal M, Newson T P. Distributed optical fibre audible frequency sensor[J]. Proceedings of SPIE, 9157, 91573T(2014).

    [51] Rohwetter P, Eisermann R, Krebber K. Distributed acoustic sensing: towards partial discharge monitoring[J]. Proceedings of SPIE, 9634, 96341C(2015).

    [52] Franciscangelis C, Margulis W, Floridia C et al. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR[J]. Proceedings of SPIE, 101683Q(10168).

    [53] Liang J J, Wang Z Y, Lu B et al. Distributed acoustic sensing for 2D and 3D acoustic source localization[J]. Optics Letters, 44, 1690-1693(2019).

    [54] Wang Z Y, Zheng H R, Li L C et al. Practical multi-class event classification approach for distributed vibration sensing using deep dual path network[J]. Optics Express, 27, 23682-23692(2019).

    [55] Thomas M D, Barry M F, Aio-Franklin J B et al. Field test of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring[J]. The Leading Edge, 32, 699-706(2013).

    [56] Jousset P, Reinsch T, Ryberg T et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications, 9, 2509(2018).

    [57] Lindsey N J, Dawe T C, Ajo-Franklin J B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing[J]. Science, 366, 1103-1107(2019).

    [58] Dou S, Lindsey N, Wagner A M et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study[J]. Scientific Reports, 7, 11620(2017).

    [59] Fang Z J, Chin K K, Qu R H et al[M]. Fundamentals of optical fiber sensors(2012).

    [60] Jia H Z, Liang S, Lou S Q et al. A k -nearest neighbor algorithm-based near category support vector machine method for event identification of φ-OTDR[J]. IEEE Sensors Journal, 19, 3683-3689(2019).

    [61] Tejedor J, Macias-Guarasa J, Martins H F et al. A contextual GMM-HMM smart fiber optic surveillance system for pipeline integrity threat detection[J]. Journal of Lightwave Technology, 37, 4514-4522(2019).

    [62] Tejedor J, Macias-Guarasa J, Martins H et al. Machine learning methods for pipeline surveillance systems based on distributed acoustic sensing: a review[J]. Applied Sciences, 7, 841-867(2017).

    [63] Aktas M, Akgun T, Demircin M U et al. Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications[J]. Proceedings of SPIE, 10208, 102080G(2017).

    [64] Wang Z Y, Pan Z Q, Ye Q et al. Novel distributed passive vehicle tracking technology using phase sensitive optical time domain reflectometer[J]. Chinese Optics Letters, 13, 100603(2015).

    [65] Cedilnik G, Hunt R, Lees G. Advances in train and rail monitoring with DAS[C], ThE35(2018).

    [66] Shpalensky N, Shiloh L, Gabai H et al. Use of distributed acoustic sensing for Doppler tracking of moving sources[J]. Optics Express, 26, 17690-17696(2018).

    [67] Ku E M, Duckworth G L. Tracking a human walker with a fiber optic distributed acoustic sensor[J]. Proceedings of Meetings on Acoustics, 19, 070053(2013).

    [68] Parker T, Shatalin S, Farhadiroushan M. Distributed acoustic sensing: a new tool for seismic applications[J]. First Break, 32, 61-69(2014).

    [69] Zhou Z X, Zhuang S L. A lateral locating method for optical fiber distributed intrusion sensing system[J]. Optics Communications, 333, 1-5(2014).

    [70] Bakku S K. Fracture characterization from seismic measurements in a borehole[D](2015).

    [71] Ivan L C N, Sava P. Multicomponent distributed acoustic sensing: concept and theory[J]. Geophysics, 83, P1-P8(2018).

    [72] Wang Z Y, Yang J Q, Gu J F et al. Multi-source aliasing suppression for distributed fiber acoustic sensing with directionally coherent enhancement technology[J]. Optics Letters, 45, 5672-5675(2020).

    [73] Munn J D, Coleman T I, Parker B L et al. Novel cable coupling technique for improved shallow distributed acoustic sensor VSPs[J]. Journal of Applied Geophysics, 138, 72-79(2017).

    [74] Dean T, Cuny T, Hartog A H. The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing[J]. Geophysical Prospecting, 65, 184-193(2017).

    [75] Willis M E, Barfoot D, Ellmauthaler A et al. Quantitative quality of distributed acoustic sensing vertical seismic profile data[J]. The Leading Edge, 35, 605-609(2016).

    [76] Harris K, White D, Melanson D et al. Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage site using a distributed acoustic sensing system[J]. International Journal of Greenhouse Gas Control, 50, 248-260(2016).

    [77] Daley T M, Miller D E, Dodds K et al. Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama[J]. Geophysical Prospecting, 64, 1318-1334(2016).

    [78] Correa J, Egorov A, Tertyshnikov K et al. Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets: a CO2CRC Otway project data example[J]. The Leading Edge, 36, 994a1-994a7(2017).

    [79] Correa J, Pevzner R, Bona A et al. 3D vertical seismic profile acquired with distributed acoustic sensing on tubing installation: a case study from the CO2CRC Otway project[J]. Interpretation, 7, SA11-SA19(2019).

    [80] Michlmayr G, Chalari A, Clarke A et al. Fiber-optic high-resolution acoustic emission (AE) monitoring of slope failure[J]. Landslides, 14, 1139-1146(2017).

    [81] Walter F, Gräff D, Lindner F et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain[J]. Nature Communications, 11, 2436(2020).

    [82] Martin E R, Huot F, Ma Y B et al. A seismic shift in scalable acquisition demands new processing: fiber-optic seismic signal retrieval in urban areas with unsupervised learning for coherent noise removal[J]. IEEE Signal Processing Magazine, 35, 31-40(2018).

    [83] Ajo-Franklin J B, Dou S, Lindsey N J et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 9, 1328(2019).

    [84] Wu M, Fan X, Liu Q et al. Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation[J]. Optics Letters, 44, 5969-5972(2019).

    [85] Huot F, Biondi B. Machine learning algorithms for automated seismic ambient noise processing applied to DAS acquisition[C], W20-03(2018).

    Zhaoyong Wang, Bin Lu, Lei Ye, Kang Ying, Yanguang Sun, Nan Cheng, Zhan Lu, Qing Ye, Haiwen Cai. Distributed Optical Fiber Acoustic Sensing and Its Application to Seismic Wave Monitoring[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306006
    Download Citation