• Infrared and Laser Engineering
  • Vol. 48, Issue 6, 603001 (2019)
Bai Lianfa*, Wang Xu, Han Jing, and Zhao Zhuang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0603001 Cite this Article
    Bai Lianfa, Wang Xu, Han Jing, Zhao Zhuang. Development review of new spectral measurement technology[J]. Infrared and Laser Engineering, 2019, 48(6): 603001 Copy Citation Text show less
    References

    [1] Zhao Z, Deng L, Bai L, et al. Optimal imaging band selection mechanism of weld pool vision based on spectrum analysis[J]. Optics & Laser Technology, 2019, 110: 145-151.

    [2] Sperling Brent A, John Hoang, William A Kimes, et al. Time-resolved surface infrared spectroscopy during atomic layer deposition[J]. Applied Spectroscopy, 2013, 67(9):1003-1012.

    [3] Yoshida Y, Oguma H, Morino I, et al. Mountaintop observation of CO2 absorption spectra using a short wavelength infrared Fourier transform spectrometer [J]. Applied Optics, 2010, 49(1): 71-79.

    [4] O′brien C M, Vargis E, Rudin A, et al. In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy[J]. American Journal of Obstetrics and Gynecology, 2018, 218(5): 528.e.

    [5] Ai Y, Liang P, Wu Y, et al. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS)[J]. Food Chemistry, 2018, 241: 427-433.

    [6] Golay M J E. Multi-slit spectrometry [J]. Journal of the Optical Society of America, 1949, 39(6): 437-444.

    [7] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

    [8] Labaw C. Airborne imaging spectrometer: an advanced concept instrument[C]//Proceedings of SPIE, 1984, 430: 68-75.

    [9] Green R O, Chrien T G, Nielsen P J, et al. Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility[C]//Proceedings of SPIE, 1993, 1937: 180-190.

    [10] Babey S K, Anger C D. Compact airborne spectrographic imager (CASI): a progress review[C]//Proceedings of SPIE, 1993, 1937: 152-164.

    [11] Braam B M, Okkonen J T, Aikio M, et al. Design and first test results of the Finnish airborne imaging spectrometer for different applications (AISA)[C]//Proceedings of SPIE, 1993, 1937: 142-152.

    [12] Rickard L J, Basedow R W, Zalewski E F, et al. HYDICE: An airborne system for hyperspectral imaging[C]//Proceedings of SPIE, 1993, 1937: 173-180.

    [13] Shimota A, Kobayashi H, Kadokura S. Radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator[J]. Applied Optics, 1999, 38(3): 571-576.

    [14] Cocks T, Jenssen R, Stewart A, et al. The HyMapTM airborne hyperspectral sensor: the system, calibration and performance[C]//Proc of the 1st EarseL workshop on Imaging Spectroscopy, 1998, 5: 37-42.

    [15] Agar B, Coulter D. Remote sensing for mineral exploration-A decade perspective 1997-2007[C]//Proceedings of Exploration, 2007, 7: 109-136.

    [16] Barnsley M J, Settle J J, Cutter M A, et al. The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1512-1520.

    [17] Tong Qingxi, Zhang Bing, Zheng Lan. Hyperspectral Remote Sensing[M]. Beijing: Higher Education Press, 2006. (in Chinese)

    [18] Gao Hengzhen. Research on classification technique for Hyperspectral remote sensing imagery [D]. Changsha: National University of Defense Technology, 2011. (in Chinese)

    [19] Han Z, Jin Y, Yun C. Spatial and temporal distributions of suspended sediment contents in the Yangtze River Estuary using the CMODIS image data from China′s SZ-3 Spacecraft[J]. Journal of Remote Sensing, 2006, 10(3): 381-386. (in Chinese)

    [20] Zhao B, Yang J, Chang L, et al. Optical design and on-orbit performance evaluation of the imaging spectrometer for Chang'e-1 lunar satellite [J]. Acta Photonica Sinica, 2009, 38(3): 479-483. (in Chinese)

    [21] Descour M, Dereniak E. Computed-tomography imaging spectrometer: experimental calibration and reconstruction results[J]. Applied Optics, 1995, 34(22): 4817-4826.

    [22] Cimino P, Neese F, Barone V. Computational spectroscopy: methods, experiments and applications[J]. Materialstoday, 2010, 13(2): 55.

    [23] Wei R, Zhou J, Jing J, et al. Developments and trends of the computed tomography imaging spectrometers[J].Spectroscopy and Spectral Analysis, 2010, 30(10): 2866-2873. (in Chinese)

    [24] Okamoto T, Yamaguchi I. Simultaneous acquisition of spectral image information[J]. Optics Letters, 1991, 16(16): 1277-1279.

    [25] Mooney J M, Vickers V E, An M, et al. High-throughput hyperspectral infrared camera[J]. Journal of the Optical Society of America A, 1997, 14(11): 2951-2961.

    [26] Fang J, Zhao D, Jiang Y. A new method in imaging spectrometry[C]//Proceedings of SPIE, 2002, 4922: 56-62.

    [27] Hagen N, Dereniak E L. Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution[J]. Applied Optics, 2008, 47(28): F85-F95.

    [28] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.

    [29] Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

    [30] Brady D J, Gehm M E. Compressive imaging spectrometers using coded apertures[C]//Visual Information Processing, 2006, 6246: 62460A.

    [31] Gehm M E, John R, Brady D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027.

    [32] Wagadarikar A, John R, Willett R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44-B51.

    [33] Galvis L, Arguello H, Arce G R. Coded aperture design in mismatched compressive spectral imaging [J]. Applied Optics, 2015, 52(10): 2153-2162.

    [34] Parada A, Arce G R. Spectral Super-resolution in colored coded aperture spectral imaging[J]. Imaging and Applied Optics, 2015, 2(4): 440-455.

    [35] Ma Y, Lv Q, Liu Y, et al. Effect evaluation of optical magnification errors for coded aperture spectrometer[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3157-3161. (in Chinese)

    [36] Lou J, Li Y, Xiong L. Catadioptric omnidirectional compressive imaging based on coded aperture[J]. Acta Optica Sinica, 2016, 36(4): 0411004. (in Chinese)

    [37] Kazemzadeh F, Wong A. Resolution-and throughput-enhanced spectroscopy using a high-throughput computational slit[J]. Optics Letters, 2016, 41(18): 4352-4355.

    [38] Ma X, Wang H, Wang Y, et al. Improving the resolution and the throughput of spectrometers by a digital projection slit[J]. Optics Express, 2017, 25(19): 23045-23050.

    [39] Yue J, Han J, Zhang Y, et al. High-throughput deconvolution-resolved computational spectrometer[J]. Chinese Optics Letters, 2014, 12(4): 043001.

    [40] Gehm M E, McCain S T, Pitsianis N P, et al. Static two-dimensional aperture coding for multimodal, multiplex spectroscopy[J]. Applied Optics, 2006, 45(13): 2965-2974.

    [41] Fernandez C A, Guenther B D, Gehm M E, et al. Longwave infrared (LWIR) coded aperture dispersive spectrometer[J]. Optics Express, 2007, 15(9):5742-5753.

    [42] Zhou Y, Rushforth C K. Least-squares reconstruction of spatially limited objects using smoothness and non-negativity constraints[J]. Applied Optics, 1982, 21(7): 1249-1252.

    [43] Wagadarikar A A, Gehm M E, Brady D J. Performance comparison of aperture codes for multimodal, multiplex spectroscopy[J]. Applied Optics, 2007, 46(22): 4932-4942.

    [44] Kong Y, Liang J, Wang B, et al. The investigation and simulation of a novel spatially modulated micro-fourier transform spectrometer[J]. Spectroscopy and Spectral Analysis, 2009, 29(4): 1142-1146.

    [45] Lv J, Liang J, Liang Z. Theoretical analysis on stationary Gaussian random noise in narrowband Fourier transform spectrometer[J]. Acta Physica Sinica, 2012, 61(7): 89-96. (in Chinese)

    [46] Jin W, Liang J, Liang Z, et al. Development of micro fourier transform spectrometer[J]. Microprocessors, 2017, 38(3): 52-59. (in Chinese)

    [47] Courtial J, Patterson B A, Harvey A R, et al. Design of a static Fourier-transform spectrometer with increased field of view[J]. Applied Optics, 1996, 35(34): 6698-6702.

    [48] Zhan G. Static Fourier-transform spectrometer with spherical reflectors[J]. Applied Optics, 2002, 41(3): 560-563.

    [49] Wang H, Lv J, Liang J, et al. Design and analysis of medium wave infrared miniature atatic Fourier transform spectrometer[J]. Acta Physica Sinica, 2018, 67(6): 060702. (in Chinese)

    [50] Li W, Lu Q, Song Y, et al. Reflective static fourier spectrometer optical system based on double right-angle beam splitter [J]. Acta Optica Sinica, 2017, 37(8): 0812004. (in Chinese)

    [51] Li J, Lu D, Qi Z. End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution[J]. Acta Physica Sinica, 2014, 64(11): 114207. (in Chinese)

    [52] Hammaker R M, DeVerse R A, Asunskis D J, et al. Handbook of Vibrational Spectroscopy[M]. New Jersey: John Wiley & Sons, Ltd, 2006.

    [53] Rose B, Rasmussen M, Herholdt-Rasmussen N, et al. Programmable spectroscopy enabled by DLP[C]//Proceedings of SPIE, 2015, 9376: 93760I.

    [54] Xu J, Zhu Z, Liu C, et al. The processing method of spectral data in Hadamard transforms spectral imager based on DMD[J]. Optics Communications, 2014, 325: 122-128.

    [55] Zhang H. Research on key technologies for coded aperture imaging spectrometer based on DMD[D]. Beijing: University of Chinese Academy of Science, 2016. (in Chinese)

    [56] Zhang R, Pan M, Yang J, et al. Optical system of echelle spectrometer based on DMD[J]. Optics and Precision Engineering, 2017, 25(12): 2994-3000. (in Chinese)

    [57] Xu J, Liu Z, Jiang N, et al. Hadamard transform spectral imager of adaptive spectral resolution based on DMD[J]. Spectroscopy and Spectral Analysis, 2013, 33(7): 2006-2009. (in Chinese)

    [58] Love S P, Graff D L. Full-frame programmable spectral filters based on micromirror arrays[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2014, 13(1): 011108.

    [59] Chi M, Wu Y, Qian F, et al. Signal-to-noise ratio enhancement of a Hadamard transform spectrometer using a two-dimensional slit-array[J]. Applied Optics, 2017, 56(25): 7188-7193.

    [60] Wang Z, Yue J, Han J, et al. High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction[J]. Applied Physics B, 2017, 123(12): 277-284.

    [61] Yue J, Han J, Zhang Y, et al. Denoising analysis of Hadamard transform spectrometry[J]. Optics Letters, 2014, 39(13): 3744-3747.

    [62] Yue J, Han J, Li L, et al. Denoising analysis of spatial pixel multiplex coded spectrometer with Hadamard H-matrix[J]. Optics Communications, 2018, 407: 355-360.

    Bai Lianfa, Wang Xu, Han Jing, Zhao Zhuang. Development review of new spectral measurement technology[J]. Infrared and Laser Engineering, 2019, 48(6): 603001
    Download Citation