• Photonics Research
  • Vol. 9, Issue 8, 1550 (2021)
Bozhang Dong1、*, Jianan Duan1、7, Heming Huang1, Justin C. Norman2、3, Kenichi Nishi4, Keizo Takemasa4, Mitsuru Sugawara4, John E. Bowers2、3、5, and Frédéric Grillot1、6
Author Affiliations
  • 1LTCI, Télécom Paris, Institut Polytechnique de Paris, 19 Place Marguerite Perey, 91120 Palaiseau, France
  • 2Institute for Energy Efficiency, University of California, Santa Barbara, California 93106, USA
  • 3Materials Department, University of California, Santa Barbara, California 93106, USA
  • 4QD Laser, Inc., Kawasaki, Kanagawa 210-0855, Japan
  • 5Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
  • 6Center for High Technology Materials, University of New-Mexico, Albuquerque, New Mexico 87106, USA
  • 7Current address: State Key Laboratory on Tunable Laser Technology, School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.421285 Cite this Article Set citation alerts
    Bozhang Dong, Jianan Duan, Heming Huang, Justin C. Norman, Kenichi Nishi, Keizo Takemasa, Mitsuru Sugawara, John E. Bowers, Frédéric Grillot. Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch[J]. Photonics Research, 2021, 9(8): 1550 Copy Citation Text show less
    References

    [1] R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, J. E. Bowers. Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnol. Mag., 13, 17-26(2019).

    [2] K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, M. A. Krainak. Frequency stabilization of distributed-feedback laser diodes at 1572  nm for lidar measurements of atmospheric carbon dioxide. Appl. Opt., 50, 1047-1056(2011).

    [3] S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, T. Kakitsuka. Directly modulated DFB laser on SiO2/Si substrate for datacenter networks. J. Lightwave Technol., 33, 1217-1222(2015).

    [4] J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, F. Grillot. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Appl. Phys. Lett., 112, 121102(2018).

    [5] N. Andriolli, F. Bontempi, G. Contestabile. InP monolithically integrated transmitters based on high speed directly modulated DFB lasers. IEEE J. Sel. Top. Quantum Electron., 26, 1500606(2020).

    [6] H. Nishimoto, M. Yamaguchi, I. Mito, K. Kobayashi. High-frequency response for DFB LD due to a wavelength detuning effect. J. Lightwave Technol., 5, 1399-1402(1987).

    [7] H. Cantú, A. McKee, D. Childs, S. Watson, A. Kelly. Dynamic performance of detuned ridge waveguide AlInGaAs distributed feedback laser diodes. Microw. Opt. Technol. Lett., 59, 1468-1470(2017).

    [8] K. Schires, N. Girard, G. Baili, G.-H. Duan, S. Gomez, F. Grillot. Dynamics of hybrid III-V silicon semiconductor lasers for integrated photonics. IEEE J. Sel. Top. Quantum Electron., 22, 43-49(2016).

    [9] R. Tkach, A. Chraplyvy. Regimes of feedback effects in 1.5-μm distributed feedback lasers. J. Lightwave Technol., 4, 1655-1661(1986).

    [10] J. Mørk, J. Mark, B. Tromborg. Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback. Phys. Rev. Lett., 65, 1999-2002(1990).

    [11] K. Petermann. External optical feedback phenomena in semiconductor lasers. IEEE J. Sel. Top. Quantum Electron., 1, 480-489(1995).

    [12] D. Lenstra, B. Verbeek, A. Den Boef. Coherence collapse in single-mode semiconductor lasers due to optical feedback. IEEE J. Quantum Electron., 21, 674-679(1985).

    [13] H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, F. Grillot. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B, 35, 2780-2787(2018).

    [14] D. Lenstra, T. T. M. van Schaijk, K. A. Williams. Toward a feedback-insensitive semiconductor laser. IEEE J. Sel. Top. Quantum Electron., 25, 1502113(2019).

    [15] F. Klopf, J. Reithmaier, A. Forchel. Highly efficient GaInAs/(Al) GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers. Appl. Phys. Lett., 77, 1419-1421(2000).

    [16] A. Ukhanov, A. Stintz, P. Eliseev, K. Malloy. Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers. Appl. Phys. Lett., 84, 1058-1060(2004).

    [17] A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, D. Bimberg. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt. Express, 15, 5388-5393(2007).

    [18] Z. Lu, J. Liu, C. Song, J. Weber, Y. Mao, S. Chang, H. Ding, P. Poole, P. Barrios, D. Poitras, S. Janz, M. O’Sullivan. High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module. Opt. Express, 26, 2160-2167(2018).

    [19] J. Duan, Y. Zhou, B. Dong, H. Huang, J. C. Norman, D. Jung, Z. Zhang, C. Wang, J. E. Bowers, F. Grillot. Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Opt. Lett., 45, 4887-4890(2020).

    [20] H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. E. Bowers, F. Grillot. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photon., 5, 016103(2020).

    [21] M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto, M. Sugawara, Y. Arakawa. Low-noise characteristics on 1.3-μm-Wavelength quantum-dot DFB lasers under external optical feedback. IEEE International Semiconductor Laser Conference (ISLC), 1-2(2018).

    [22] J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, F. Grillot. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration. Photon. Res., 7, 1222-1228(2019).

    [23] B. Dong, J.-D. Chen, F.-Y. Lin, J. C. Norman, J. E. Bowers, F. Grillot. Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long-and short-cavity feedback conditions for photonic integrated circuits. Phys. Rev. A, 103, 033509(2021).

    [24] A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, J. E. Bowers. Quantum dot lasers for silicon photonics. Photon. Res., 3, B1-B9(2015).

    [25] T. Katsuyama. Development of semiconductor laser for optical communication. SEI Tech. Rev., 69, 13-20(2009).

    [26] G. P. Agrawal, N. K. Dutta. Semiconductor Lasers(2013).

    [27] G. Morthier, P. Vankwikelberge. Handbook of Distributed Feedback Laser Diodes(2013).

    [28] K. Nishi, K. Takemasa, M. Sugawara, Y. Arakawa. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron., 23, 1901007(2017).

    [29] H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, H. Imai. Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers. IEEE J. Quantum Electron., 23, 804-814(1987).

    [30] K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, Y. Arakawa. Wide-temperature-range 10.3  Gbit/s operations of 1.3  μm high-density quantum-dot DFB lasers. Electron. Lett., 47, 206-208(2011).

    [31] S. J. Jeong, J. K. Kang, K. Oh, B. K. Kang, T.-J. Kim, Y. Sin. Effect of wavelength detuning on spectral and temperature characteristics of 1.3-μm DFB lasers. Proc. SPIE, 3001, 394-399(1997).

    [32] C. Henry. Performance of distributed feedback lasers designed to favor the energy gap mode. IEEE J. Quantum Electron., 21, 1913-1918(1985).

    [33] K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, Y. Arakawa. Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission. J. Cryst. Growth, 378, 459-462(2013).

    [34] H. Lu, C. Blaauw, T. Makino. Single-mode operation over a wide temperature range in 1.3  μm InGaAsP/InP distributed feedback lasers. J. Lightwave Technol., 14, 851-859(1996).

    [35] K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, Y. Nakata, T. Yamamoto, M. Sugawara, Y. Arakawa. Temperature-stable 10.3-Gb/s operation of 1.3-μm quantum-dot DFB lasers with GaInP/GaAs gratings. National Fiber Optic Engineers Conference, JWA28(2009).

    [36] L. A. Coldren, S. W. Corzine, M. L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits, 218(2012).

    [37] Y.-G. Zhou, C. Zhou, C.-F. Cao, J.-B. Du, Q. Gong, C. Wang. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt. Express, 25, 28817-28824(2017).

    [38] F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan. Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm. IEEE J. Sel. Top. Quantum Electron., 13, 111-124(2007).

    [39] D. Arsenijević, D. Bimberg. Quantum-dot lasers for 35  Gbit/s pulse-amplitude modulation and 160  Gbit/s differential quadrature phase-shift keying. Proc. SPIE, 9892, 98920S(2016).

    [40] Y. He, Z. Zhang, Z. Lv, T. Yang, D. Lu, L. Zhao. 10-Gbps 20-km feedback-resistant transmission using directly modulated quantum-dot lasers. IEEE Photon. Technol. Lett., 32, 1353-1356(2020).

    [41] D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, J. E. Bowers. Directly modulated 1.3  μm quantum dot lasers epitaxially grown on silicon. Opt. Express, 26, 7022-7033(2018).

    [42] A. Fiore, A. Markus. Differential gain and gain compression in quantum-dot lasers. IEEE J. Quantum Electron., 43, 287-294(2007).

    [43] C. Hantschmann, P. P. Vasil’ev, A. Wonfor, S. Chen, M. Liao, A. J. Seeds, H. Liu, R. V. Penty, I. H. White. Understanding the bandwidth limitations in monolithic 1.3  μm InAs/GaAs quantum dot lasers on silicon. J. Lightwave Technol., 37, 949-955(2018).

    [44] A. Martinez, Y. Li, L. F. Lester, A. L. Gray. Microwave frequency characterization of undoped and p-doped quantum dot lasers. Appl. Phys. Lett., 90, 251101(2007).

    [45] F. Grillot, B. Dagens, J.-G. Provost, H. Su, L. F. Lester. Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron., 44, 946-951(2008).

    [46] W. W. Chow, Z. Zhang, J. C. Norman, S. Liu, J. E. Bowers. On quantum-dot lasing at gain peak with linewidth enhancement factor αH=0. APL Photon., 5, 026101(2020).

    [47] Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, J. E. Bowers. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J. Sel. Top. Quantum Electron., 25, 1900509(2019).

    [48] M. Osinski, J. Buus. Linewidth broadening factor in semiconductor lasers–an overview. IEEE J. Quantum Electron., 23, 9-29(1987).

    [49] G. Liu, X. Jin, S.-L. Chuang. Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique. IEEE Photon. Technol. Lett., 13, 430-432(2001).

    [50] J.-G. Provost, F. Grillot. Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach–Zehnder interferometer. IEEE Photon. J., 3, 476-488(2011).

    [51] J.-G. Provost, A. Martinez, A. Shen, A. Ramdane. Single step measurement of optical transmitters Henry factor using sinusoidal optical phase modulations. Opt. Express, 19, 21396-21403(2011).

    [52] R. Schimpe, J. Bowers, T. L. Koch. Characterisation of frequency response of 1.5  μm InGaAsP DFB laser diode and InGaAs PIN photodiode by heterodyne measurement technique. Electron. Lett., 22, 453-454(1986).

    [53] I. Kang, C. Dorrer. Method of optical pulse characterization using sinusoidal optical phase modulations. Opt. Lett., 32, 2538-2540(2007).

    [54] F. Favre. Theoretical analysis of external optical feedback on DFB semiconductor lasers. IEEE J. Quantum Electron., 23, 81-88(1987).

    [55] F. Grillot. On the effects of an antireflection coating impairment on the sensitivity to optical feedback of AR/HR semiconductor DFB lasers. IEEE J. Quantum Electron., 45, 720-729(2009).

    [56] B. Dong, J. Duan, C. Shang, H. Huang, A. B. Sawadogo, D. Jung, Y. Wan, J. E. Bowers, F. Grillot. Influence of the polarization anisotropy on the linewidth enhancement factor and reflection sensitivity of 1.55-μm InP-based InAs quantum dash lasers. Appl. Phys. Lett., 115, 091101(2019).

    [57] J. Mørk, B. Tromborg, P. L. Christiansen. Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis. IEEE J. Quantum Electron., 24, 123-133(1988).

    [58] Y. Takiguchi, H. Fujino, J. Ohtsubo. Experimental synchronization of chaotic oscillations in externally injected semiconductor lasers in a low-frequency fluctuation regime. Opt. Lett., 24, 1570-1572(1999).

    [59] S. Azouigui, B. Dagens, F. Lelarge, J. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, A. Ramdane. Tolerance to optical feedback of 10-Gb/s quantum-dash-based lasers emitting at 1.51  μm. IEEE Photon. Technol. Lett., 19, 1181-1183(2007).

    [60] S. Azouigui, B. Dagens, F. Lelarge, J.-G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Q. Zou, A. Ramdane. Optical feedback tolerance of quantum-dot-and quantum-dash-based semiconductor lasers operating at 1.55  μm. IEEE J. Sel. Top. Quantum Electron., 15, 764-773(2009).

    Bozhang Dong, Jianan Duan, Heming Huang, Justin C. Norman, Kenichi Nishi, Keizo Takemasa, Mitsuru Sugawara, John E. Bowers, Frédéric Grillot. Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch[J]. Photonics Research, 2021, 9(8): 1550
    Download Citation