• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 4, 040002 (2023)
Shi YIN, Yangyang TAN, and Weijie FU*
Author Affiliations
  • School of Physics, Dalian University of Technology, Dalian 116024, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.040002 Cite this Article
    Shi YIN, Yangyang TAN, Weijie FU. Critical phenomena and functional renormalization group[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040002 Copy Citation Text show less
    References

    [1] Luo X F, Wang Q, Xu N et al[M]. Properties of QCD matter at high baryon density(2022).

    [2] WU Shanjin, SONG Huichao. Critical dynamical fluctuations near the QCD critical point[J]. Nuclear Techniques, 46, 040004(2023).

    [3] XU Kun, HUANG Mei. QCD critical end point and baryon number fluctuation[J]. Nuclear Techniques, 46, 040005(2023).

    [4] ZHANG Yu, ZHANG Dingwei, LUO Xiaofeng. Experimental study of the QCD phase diagram in relativistic heavy-ion collisions[J]. Nuclear Techniques, 46, 040001(2023).

    [5] DU Yilun, LI Chengming, SHI Chao et al. Review of QCD phase diagram analysis using effective field theories[J]. Nuclear Techniques, 46, 040009(2023).

    [6] Aoki Y, Endrodi G, Fodor Z et al. The order of the quantum chromodynamics transition predicted by the standard model of particle physics[J]. Nature, 443, 675-678(2006).

    [7] Andronic A, Braun-Munzinger P, Redlich K et al. Decoding the phase structure of QCD via particle production at high energy[J]. Nature, 561, 321-330(2018).

    [8] Borsanyi S, fodor Z, Giordano M et al. Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real μB vs. extrapolations[J](2022).

    [9] Borsányi S, Fodor Z, Guenther J N et al. Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme[J]. Physical Review Letters, 126, 232001(2021).

    [10] Bollweg D, Goswami J, Kaczmarek O et al. Taylor expansions and Padé approximants for cumulants of conserved charge fluctuations at nonvanishing chemical potentials[J]. Physical Review D, 105, 074511(2022).

    [11] Fischer C S. QCD at finite temperature and chemical potential from Dyson-Schwinger equations[J]. Progress in Particle and Nuclear Physics, 105, 1-60(2019).

    [12] Fu W J, Pawlowski J M, Rennecke F. QCD phase structure at finite temperature and density[J]. Physical Review D, 101, 054032(2020).

    [13] Gao F, Pawlowski J M. Chiral phase structure and critical end point in QCD[J]. Physics Letters B, 820, 136584(2021).

    [14] Gunkel P J, Fischer C S. Locating the critical endpoint of QCD: Mesonic backcoupling effects[J]. Physical Review D, 104, 054022(2021).

    [15] Fu W J. QCD at finite temperature and density within the fRG approach: an overview[J]. Communications in Theoretical Physics, 74, 097304(2022).

    [16] Schaefer B J, Wambach J. The phase diagram of the quark-meson model[J]. Nuclear Physics A, 757, 479-492(2005).

    [17] Fukushima K, Skokov V. Polyakov loop modeling for hot QCD[J]. Progress in Particle and Nuclear Physics, 96, 154-199(2017).

    [18] Chen Y R, Wen R, Fu W J. Critical behaviors of the O(4) and Z(2) symmetries in the QCD phase diagram[J]. Physical Review D, 104, 054009(2021).

    [19] Grossi E, Ihssen F J, Pawlowski J M et al. Shocks and quark-meson scatterings at large density[J]. Physical Review D, 104, 016028(2021).

    [20] Otto K, Busch C, Schaefer B J. Regulator scheme dependence of the chiral phase transition at high densities[J]. Physical Review D, 106, 094018(2022).

    [21] Ma S G[M]. Modern theory of critical phenomena(2000).

    [22] Wilson K G. Renormalization group and critical phenomena. I. renormalization group and the kadanoff scaling picture[J]. Physical Review B, 4, 3174-3183(1971).

    [23] Wilson K G. Renormalization group and critical phenomena. II. phase-space cell analysis of critical behavior[J]. Physical Review B, 4, 3184-3205(1971).

    [24] Wilson K G, Fisher M E. Critical exponents in 3.99 dimensions[J]. Physical Review Letters, 28, 240-243(1972).

    [25] Wilson K. The renormalization group and the ε expansion[J]. Physics Reports, 12, 75-199(1974).

    [26] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).

    [27] Bzdak A, Esumi S, Koch V et al. Mapping the phases of quantum chromodynamics with beam energy scan[J]. Physics Reports, 853, 1-87(2020).

    [28] Friman B, Höhne C, Knoll J et al[M]. The CBM physics book: compressed baryonic matter in laboratory experiments(2011).

    [29] Agakishiev G, Balanda A, Bannier B et al. The high-acceptance dielectron spectrometer HADES[J]. European Physical Journal, A41, 243-277(2009).

    [30] Abgrall N, Andreeva O, Aduszkiewicz A et al. NA61/SHINE facility at the CERN SPS: beams and detector system[J]. JINST, 9, P06005(2014).

    [31] Sorin A, Kekelidze V, Kovalenko A et al. Heavy-ion program at NICA/MPD at JINR[J]. Nuclear Physics A, 855, 510-513(2011).

    [32] Blaschke D, Aichelin J, Bratkovskaya E et al. Topical issue on exploring strongly interacting matter at high densities - NICA white paper[J]. The European Physical Journal A, 52, 267(2016).

    [33] Dainese A, Diehl M, Di Nezza P et al. Physics beyond colliders: QCD working group report[EB/OL]. arXiv(2019). https://arxiv.org/abs/1901.04482

    [34] Yang J C, Xia J W, Xiao G Q et al. High Intensity heavy ion Accelerator Facility (HIAF) in China[J/OL]. Nuclear Instruments & Methods, B317, 263-265(2013).

    [35] Lü L M, Yi H, Xiao Z G et al. Conceptual design of the HIRFL-CSR external-target experiment[J]. Science China Physics, Mechanics & Astronomy, 60, 012021(2017).

    [36] Sakaguchi T. Study of high baryon density QCD matter at J-PARC-HI[J]. Nuclear Physics A, 967, 896-899(2017).

    [37] Sako H. Studies of extremely dense matter in heavy-ion collisions at J-PARC[J]. Nuclear Physics A, 982, 959-962(2019).

    [38] Stephanov M A, Rajagopal K, Shuryak E V. Event-by-event fluctuations in heavy ion collisions and the QCD critical point[J]. Physical Review D, 60, 114028(1999).

    [39] Stephanov M A. Non-Gaussian fluctuations near the QCD critical point[J]. Physical Review Letters, 102, 032301(2009).

    [40] Stephanov M A. Sign of kurtosis near the QCD critical point[J]. Physical Review Letters, 107, 052301(2011).

    [41] Adamczyk L, Adkins J K, Agakishiev G et al. Energy dependence of moments of net-proton multiplicity distributions at RHIC[J]. Physical Review Letters, 112, 032302(2014).

    [42] Adamczyk L, Adkins J K, Agakishiev G et al. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC[J]. Physical Review Letters, 113, 092301(2014).

    [43] Luo X. Energy dependence of moments of net-proton and net-charge multiplicity distributions at STAR[J]. PoS, CPOD2014, 019(2015).

    [44] Adamczyk L, OTHERS. Collision energy dependence of moments of net-kaon multiplicity distributions at RHIC[J]. Physics Letters, B785, 551-560(2018).

    [45] Adam J, Adamczyk L, Adams J R et al. Collision-energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon multiplicity distributions in Au+Au collisions[J]. Physical Review C, 100, 014902(2019).

    [46] Adam J, Adamczyk L, Adams J R et al. Nonmonotonic energy dependence of net-proton number fluctuations[J]. Physical Review Letters, 126, 092301(2021).

    [47] Abdallah M, Adam J, Adamczyk L et al. Measurement of the sixth-order cumulant of net-proton multiplicity distributions in Au+Au collisions at sNN= 27, 54.4, and 200 GeV at RHIC[J]. Physical Review Letters, 127, 262301(2021).

    [48] Abdallah M S, Aboona B E, Adam J et al. Measurements of proton high-order cumulants in SNN=3 GeV Au+Au collisions and implications for the QCD critical point[J]. Physical Review Letters, 128, 202303(2022).

    [49] Karsch F. Critical behavior and net-charge fluctuations from lattice QCD[J]. PoS, CORFU2018, 163(2019).

    [50] Wetterich C. Exact evolution equation for the effective potential[J]. Physics Letters B, 301, 90-94(1993).

    [51] Berges J, Tetradis N, Wetterich C. Non-perturbative renormalization flow in quantum field theory and statistical physics[J]. Physics Reports, 363, 223-386(2002).

    [52] Pawlowski J M. Aspects of the functional renormalisation group[J]. Annals of Physics, 322, 2831-2915(2007).

    [53] Schaefer B J, Wambach J. Renormalization group approach towards the QCD phase diagram[J]. Physics of Particles and Nuclei, 39, 1025-1032(2008).

    [54] Gies H. Introduction to the functional RG and applications to gauge theories[J]. Lecture Notes in Physics, 852, 287-348(2012).

    [55] Rosten O J. Fundamentals of the exact renormalization group[J]. Physics Reports, 511, 177-272(2012).

    [56] Braun J. Fermion interactions and universal behavior in strongly interacting theories[J]. Journal of Physics G: Nuclear and Particle Physics, 39, 033001(2012).

    [57] Pawlowski J M. Equation of state and phase diagram of strongly interacting matter[J]. Nuclear Physics A, 931, 113-124(2014).

    [58] Dupuis N, Canet L, Eichhorn A et al. The nonperturbative functional renormalization group and its applications[J]. Physics Reports, 910, 1-114(2021).

    [59] Braun J, Fister L, Pawlowski J M et al. From quarks and gluons to hadrons: Chiral symmetry breaking in dynamical QCD[J]. Physical Review D, 94, 034016(2016).

    [60] Mitter M, Pawlowski J M, Strodthoff N. Chiral symmetry breaking in continuum QCD[J]. Physical Review D, 91, 054035(2015).

    [61] Rennecke F. Vacuum structure of vector mesons in QCD[J]. Physical Review D, 92, 076012(2015).

    [62] Cyrol A K, Fister L, Mitter M et al. Landau gauge Yang-Mills correlation functions[J]. Physical Review D, 94, 054005(2016).

    [63] Cyrol A K, Mitter M, Pawlowski J M et al. Nonperturbative finite-temperature Yang-Mills theory[J]. Physical Review D, 97, 054015(2018).

    [64] Cyrol A K, Mitter M, Pawlowski J M et al. Nonperturbative quark, gluon, and meson correlators of unquenched QCD[J]. Physical Review D, 97, 054006(2018).

    [65] Braun J, Fu W J, Pawlowski J M et al. Chiral susceptibility in (2+1)-flavor QCD[J]. Physical Review D, 102, 056010(2020).

    [66] Litim D F. Optimisation of the exact renormalisation group[J]. Physics Letters B, 486, 92-99(2000).

    [67] Litim D F. Optimized renormalization group flows[J]. Physical Review D, 64, 105007(2001).

    [68] Litim D F. Critical exponents from optimised renormalisation group flows[J]. Nuclear Physics B, 631, 128-158(2002).

    [69] Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models[J]. Physical Review Letters, 17, 1133-1136(1966).

    [70] Hohenberg P C. Existence of long-range order in one and two dimensions[J]. Physical Review, 158, 383-386(1967).

    [71] Coleman S R. There are no Goldstone bosons in two dimensions[J]. Communications in Mathematical Physics, 31, 259-264(1973).

    [72] Tan Y Y, Huang C, Chen Y R et al. Criticality of the O(N) universality via global solutions to nonperturbative fixed-point equations[EB/OL]. arXiv(2022). https://arxiv.org/abs/2211.10249

    [73] Bazavov A, Ding H T, Hegde P et al. Freeze-out conditions in heavy ion collisions from QCD thermodynamics[J]. Physical Review Letters, 109, 192302(2012).

    [74] Borsányi S, Fodor Z, Katz S D et al. Freeze-out parameters: lattice meets experiment[J]. Physical Review Letters, 111, 062005(2013).

    [75] Borsanyi S, Fodor Z, Katz S D et al. Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency?[J]. Physical Review Letters, 113, 052301(2014).

    [76] Bazavov A, Ding H T, Hegde P et al. Skewness and kurtosis of net baryon-number distributions at small values of the baryon chemical potential[J]. Physical Review D, 96, 074510(2017).

    [77] Bazavov A, Ding H T, Hegde P et al. QCD equation of state to O(μB6) from lattice QCD[J]. Physical Review D, 95, 054504(2017).

    [78] Bazavov A, Bollweg D, Ding H T et al. Skewness, kurtosis, and the fifth and sixth order cumulants of net baryon-number distributions from lattice QCD confront high-statistics STAR data[J]. Physical Review D, 101, 074502(2020).

    [79] Borsanyi S, Fodor Z, Guenther J N et al. Higher order fluctuations and correlations of conserved charges from lattice QCD[J]. Journal of High Energy Physics, 2018, 205-205(2018).

    [80] Skokov V, Stokić B, Friman B et al. Meson fluctuations and thermodynamics of the Polyakov-loop-extended quark-meson model[J]. Physical Review C, 82, 015206(2010).

    [81] Skokov V, Friman B, Redlich K. Quark number fluctuations in the Polyakov loop-extended quark-meson model at finite baryon density[J]. Physical Review C, 83, 054904(2011).

    [82] Friman B, Karsch F, Redlich K et al. Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC[J]. The European Physical Journal C, 71, 1694(2011).

    [83] Morita K, Friman B, Redlich K. Criticality of the net-baryon number probability distribution at finite density[J]. Physics Letters B, 741, 178-183(2015).

    [84] Fu W J, Pawlowski J M. Relevance of matter and glue dynamics for baryon number fluctuations[J]. Physical Review D, 92, 116006(2015).

    [85] Fu W J, Pawlowski J M. Correlating the skewness and kurtosis of baryon number distributions[J]. Physical Review D, 93, 091501(2016).

    [86] Fu W J, Pawlowski J M, Rennecke F et al. Baryon number fluctuations at finite temperature and density[J]. Physical Review D, 94, 116020(2016).

    [87] Almási G A, Friman B, Redlich K. Baryon number fluctuations in chiral effective models and their phenomenological implications[J]. Physical Review D, 96, 014027(2017).

    [88] Fu W J, Pawlowski J M, Rennecke F. Strangeness neutrality and QCD thermodynamics[J]. SciPost Physics Core, 2, 2(2020).

    [89] Fu W J, Pawlowski J M, Rennecke F. Strangeness neutrality and baryon-strangeness correlations[J]. Physical Review D, 100, 111501(2019).

    [90] Wen R, Huang C, Fu W J. Baryon number fluctuations in the 2+1 flavor low energy effective model[J]. Physical Review D, 99, 094019(2019).

    [91] Wen R, Fu W J. Correlations of conserved charges and QCD phase structure[J]. Chinese Physics C, 45, 044112(2021).

    [92] Fu W J, Luo X F, Pawlowski J M et al. Hyper-order baryon number fluctuations at finite temperature and density[J]. Physical Review D, 104, 094047(2021).

    [93] Fu W J, Liu Y X, Wu Y L. Fluctuations and correlations of conserved charges in QCD at finite temperature with effective models[J]. Physical Review D, 81, 014028(2010).

    [94] Fu W J, Wu Y L. Fluctuations and correlations of conserved charges near the QCD critical point[J]. Physical Review D, 82, 074013(2010).

    [95] Karsch F, Schaefer B J, Wagner M et al. Towards finite density QCD with Taylor expansions[J]. Physics Letters B, 698, 256-264(2011).

    [96] Schaefer B J, Wagner M. QCD critical region and higher moments for three-flavor models[J]. Physical Review D, 85, 034027(2012).

    [97] Li Z B, Xu K, Wang X Y et al. The kurtosis of net baryon number fluctuations from a realistic Polyakov-Nambu-Jona-Lasinio model along the experimental freeze-out line[J]. The European Physical Journal C, 79, 245(2019).

    [98] Xin X Y, Qin S X, Liu Y X. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach[J]. Physical Review D, 90, 076006(2014).

    [99] Isserstedt P, Buballa M, Fischer C S et al. Baryon number fluctuations in the QCD phase diagram from Dyson-Schwinger equations[J]. Physical Review D, 100, 074011(2019).

    [100] Bazavov A, Ding H T, Hegde P et al. Skewness and kurtosis of net baryon-number distributions at small values of the baryon chemical potential[J]. Physical Review D, 96, 074510(2017).

    [101] Braun-Munzinger P, Redlich K, Stachel J. Particle production in heavy ion collisions[M]. Quark-Gluon Plasma 3, 491-599(2004).

    [102] Borsanyi S, Fodor Z, Guenther J N et al. QCD crossover at finite chemical potential from lattice simulations[J]. Physical Review Letters, 125, 052001(2020).

    [103] Hwa R C, Wang X N[M]. Quark-gluon plasma 3(2004).

    [104] Adamczyk L, Adkins J K, Agakishiev G et al. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program[J]. Physical Review C, 96, 044904(2017).

    [105] Tan Y Y, Chen Y R, Fu W J. Real-time dynamics of the O(4) scalar theory within the fRG approach[J]. SciPost Physics, 12, 26(2022).

    [106] Yabunaka S, Delamotte B. Surprises in O(N) models: nonperturbative fixed points, large N limits, and multicriticality[J]. Physical Review Letters, 119, 191602(2017).

    [107] Stephanov M A. QCD critical point and complex chemical potential singularities[J]. Physical Review D, 73, 094508(2006).

    [108] Mukherjee S, Skokov V. Universality driven analytic structure of the QCD crossover: radius of convergence in the baryon chemical potential[J]. Physical Review D, 103, L071501(2021).

    [109] Connelly A, Johnson G, Rennecke F et al. Universal location of the Yang-lee edge singularity in O(N) theories[J]. Physical Review Letters, 125, 191602(2020).

    [110] Rennecke F, Skokov V. Universal location of Yang-lee edge singularity for a one-component field theory in 1≤D≤4[J]. Annals of Physics, 444, 169010(2022).

    [111] Ihssen F, Pawlowski J M. Functional flows for complex effective actions[EB/OL]. arXiv(2022). https://arxiv.org/abs/2207.10057

    Shi YIN, Yangyang TAN, Weijie FU. Critical phenomena and functional renormalization group[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040002
    Download Citation