• Advanced Photonics
  • Vol. 2, Issue 6, 065002 (2020)
Cheng Zheng1、2, Di Jin3, Yanping He1, Hongtao Lin4, Juejun Hu5, Zahid Yaqoob6, Peter T. C. So2、6、7, and Renjie Zhou1、8、*
Author Affiliations
  • 1The Chinese University of Hong Kong, Department of Biomedical Engineering, Hong Kong, China
  • 2Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts, United States
  • 3Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, United States
  • 4Zhejiang University, College of Information Science and Electronic Engineering, Hangzhou, China
  • 5Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, Massachusetts, United States
  • 6Massachusetts Institute of Technology, Laser Biomedical Research Center, Cambridge, Massachusetts, United States
  • 7Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusetts, United States
  • 8The Chinese University of Hong Kong, Shun Hing Institute of Advanced Engineering, Hong Kong, China
  • show less
    DOI: 10.1117/1.AP.2.6.065002 Cite this Article Set citation alerts
    Cheng Zheng, Di Jin, Yanping He, Hongtao Lin, Juejun Hu, Zahid Yaqoob, Peter T. C. So, Renjie Zhou. High spatial and temporal resolution synthetic aperture phase microscopy[J]. Advanced Photonics, 2020, 2(6): 065002 Copy Citation Text show less
    References

    [1] L. Li et al. High-performance flexible waveguide-integrated photodetectors. Optica, 5, 44-51(2018).

    [2] H. Lin et al. Chalcogenide glass-on-graphene photonics. Nat. Photonics, 11, 798-805(2017).

    [3] C. Edwards et al. Optically monitoring and controlling nanoscale topography during semiconductor etching. Light: Sci. Appl., 2, e30(2012).

    [4] C. Edwards et al. Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging. Langmuir, 31, 11020-11032(2015).

    [5] C. Bakal et al. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science, 316, 1753-1756(2007).

    [6] K. Goda, K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

    [7] G. Dardikman-Yoffe et al. High-resolution 4-D acquisition of freely swimming human sperm cells without staining. Sci. Adv., 6, eaay7619(2020).

    [8] L. G. Wilson, L. M. Carter, S. E. Reece. High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms. Proc. Natl. Acad. Sci. U. S. A., 110, 18769-18774(2013).

    [9] G. Popescu. Quantitative Phase Imaging of Cells and Tissues(2011).

    [10] R. Zhou et al. Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy. Nano Lett., 13, 3716-3721(2013).

    [11] Y. Yang et al. Quantitative amplitude and phase imaging with interferometric plasmonic microscopy. ACS Nano, 13, 13595-13601(2019).

    [12] Y. Park et al. Measurement of red blood cell mechanics during morphological changes. Proc. Natl. Acad. Sci. U. S. A., 107, 6731-6736(2010).

    [13] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018).

    [14] A. Greenbaum et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods, 9, 889-895(2012).

    [15] A. Greenbaum et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep., 3, 1717(2013).

    [16] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [17] L. Tian et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica, 2, 904-911(2015).

    [18] M. Kim et al. High-speed synthetic aperture microscopy for live cell imaging. Opt. Lett., 36, 148-150(2011).

    [19] T. R. Hillman et al. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy. Opt. Express, 17, 7873-7892(2009).

    [20] S. A. Alexandrov et al. Synthetic aperture Fourier holographic optical microscopy. Phys. Rev. Lett., 97, 168102(2006).

    [21] P. Feng, X. Wen, R. Lu. Long-working-distance synthetic aperture Fresnel off-axis digital holography. Opt. Express, 17, 5473-5480(2009).

    [22] J. Di et al. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning. Appl. Opt., 47, 5654-5659(2008).

    [23] L. Granero et al. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information. Appl. Opt., 49, 845-857(2010).

    [24] M. Paturzo, P. Ferraro. Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography. Opt. Lett., 34, 3650-3652(2009).

    [25] G. Maire et al. Phase imaging and synthetic aperture super-resolution via total internal reflection microscopy. Opt. Lett., 43, 2173-2176(2018).

    [26] T. S. Ralston et al. Interferometric synthetic aperture microscopy. Nat. Phys., 3, 129-134(2007).

    [27] W. Luo et al. Synthetic aperture-based on-chip microscopy. Light: Sci. Appl., 4, e261(2015).

    [28] V. Mico et al. Single-step superresolution by interferometric imaging. Opt. Express, 12, 2589-2596(2004).

    [29] C. Yuan, H. Zhai, H. Liu. Angular multiplexing in pulsed digital holography for aperture synthesis. Opt. Lett., 33, 2356-2358(2008).

    [30] Y.-C. Lin et al. One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating. Opt. Express, 26, 12620-12631(2018).

    [31] J. A. Picazo-Bueno et al. Superresolved spatially multiplexed interferometric microscopy. Opt. Lett., 42, 927-930(2017).

    [32] S. Shin et al. Active illumination using a digital micromirror device for quantitative phase imaging. Opt. Lett., 40, 5407-5410(2015).

    [33] K. Lee et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography. Opt. Lett., 42, 999-1002(2017).

    [34] Y. He, Y. Wang, R. Zhou. Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells. Proc. SPIE, 11294, 1129402(2020).

    [35] W. Choi et al. Tomographic phase microscopy. Nat. Methods, 4, 717-719(2007).

    [36] T. Kim et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics, 8, 256-263(2014).

    CLP Journals

    [1] Angika Bulbul, Joseph Rosen. Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time[J]. Photonics Research, 2021, 9(7): 1172

    Cheng Zheng, Di Jin, Yanping He, Hongtao Lin, Juejun Hu, Zahid Yaqoob, Peter T. C. So, Renjie Zhou. High spatial and temporal resolution synthetic aperture phase microscopy[J]. Advanced Photonics, 2020, 2(6): 065002
    Download Citation