• Infrared and Laser Engineering
  • Vol. 54, Issue 1, 20240419 (2025)
Ning JIANG1,2,3,4, Ying GUO1, Zhaoyang LIU2,3,4,*, and Feng QI2,3,4
Author Affiliations
  • 1College of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
  • 2Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110169, China
  • 3Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, China
  • 4Key Laboratory of Terahertz Imaging and Sensing, Liaoning Province, Shenyang 110169, China
  • show less
    DOI: 10.3788/IRLA20240419 Cite this Article
    Ning JIANG, Ying GUO, Zhaoyang LIU, Feng QI. A 281 GHz terahertz detector in 180 nm CMOS process[J]. Infrared and Laser Engineering, 2025, 54(1): 20240419 Copy Citation Text show less
    References

    [1] M GEZIMATI, G SINGH. Terahertz imaging and sensing for healthcare: current status and future perspectives. IEEE Access, 11, 18590-18619(2023).

    [2] X CHEN, H LINDLEY-HATCHER, R I STANTCHEV et al. Terahertz (THz) biophotonics technology: Instrumentation, techniques, and biomedical applications. Chemical Physics Reviews, 3, 011311(2022).

    [3] X ZHANG, T CHANG, Z WANG et al. Three-dimensional terahertz continuous wave imaging radar for nondestructive testing. IEEE Access, 8, 144259-144276(2020).

    [4] H GE, Z SUN, Y JIANG et al. Recent advances in THz detection of water. International Journal of Molecular Sciences, 24, 10936(2023).

    [5] Z YAN, L G ZHU, K MENG et al. THz medical imaging: from in vitro to in vivo. Trends in Biotechnology, 40, 816-830(2022).

    [6] Y LI, R MIN, J LI et al. An aperture adaptive scale transform of terahertz radar imaging algorithm. IEEE Transactions on Instrumentation and Measurement, 72, 1-11(2022).

    [7] L T WEDAGE, B BUTLER, S BALASUBRAMANIAM et al. Comparative analysis of terahertz propagation under dust storm conditions on mars and earth. IEEE Journal of Selected Topics in Signal Processing, 17, 745-760(2023).

    [8] B LI, D ZHANG, Y SHEN. Study on terahertz spectrum analysis and recognition modeling of common agricultural diseases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 243, 118820(2020).

    [9] IKARI T, SASAKI Y, OTANI C. 275–305 GHz FMCW radar 3D imaging f walkthrough security body scanner[C]Photonics. MDPI, 2023, 10(3): 343.

    [10] N U SAQIB, M S HAROON, H Y LEE et al. THz communications: A key enabler for future cellular networks. IEEE Access, 11, 117474-117493(2023).

    [11] TALEB F, HERNEZCARDOSO G G, CASTROCAMUS E, et al. Transmission, reflection, scattering acterization of building materials f indo THz communications [J]. IEEE Transactions on Terahertz Science Technology, 2023, 13(5): 421430.

    [12] W MIAO, F LI, Q LUO et al. A terahertz detector based on superconductor-graphene-superconductor Josephson junction. Carbon, 202, 112-117(2023).

    [13] H QIN, X LI, J SUN et al. Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors. Applied Physics Letters, 110, 171109(2017).

    [14] Kaichu WANG, Qingfeng DING, Qi ZHOU. Arrayed terahertz vector measurement system based on AlGaN/GaN HEMT heterodyne mixer. Infrared and Laser Engineering, 53, 20240088(2024).

    [15] W KNAP, F TEPPE, Y MEZIANI et al. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Applied Physics Letters, 85, 675-677(2004).

    [16] K IKAMAS, D CIBIRAITE, A LISAUSKAS et al. Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz. IEEE Electron Device Letters, 39, 1413-1416(2018).

    [17] Z LIU, F QI, Y WANG et al. A multi-band terahertz detector in 65-nm CMOS for spectroscopic imaging. IEEE Transactions on Terahertz Science and Technology, 14, 781-790(2024).

    [18] M ANDREE, J GRZYB, R JAIN et al. Broadband modeling, analysis, and characterization of SiGe HBT terahertz direct detectors. IEEE Transactions on Microwave Theory and Techniques, 70, 1314-1333(2022).

    [19] M FERRERAS, D ČIBIRAITė-LUKENSKIENė, A LISAUSKAS et al. Broadband sensing around 1 THz via a novel biquad-antenna-coupled low-NEP detector in CMOS. IEEE Transactions on Terahertz Science and Technology, 11, 16-27(2020).

    [20] R HAN, Y ZHANG, D COQUILLAT et al. A 280-GHz Schottky diode detector in 130-nm digital CMOS. IEEE Journal of Solid-State Circuits, 46, 2602-2612(2011).

    [21] Z LIU, L LIU, J YANG et al. A CMOS fully integrated 860-GHz terahertz sensor. IEEE Transactions on Terahertz Science and Technology, 7, 455-465(2017).

    [22] M LIU, Z CAI, Z WANG et al. A 3 THz CMOS image sensor. IEEE Journal of Solid-State Circuits, 59, 2934-2947(2024).

    [23] Z LIU, L LIU, Z ZHANG et al. Terahertz detector for imaging in 180-nm standard CMOS process. Science China Information Sciences, 60, 1-9(2017).

    [24] E OJEFORS, U R PFEIFFER, A LISAUSKAS et al. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. IEEE Journal of Solid-State Circuits, 44, 1968-1976(2009).

    [25] X WU, H LU, K SENGUPTA. Programmable terahertz chip-scale sensing interface with direct digital reconfiguration at sub-wavelength scales. Nature Communications, 10, 2722(2019).

    [26] Huan WANG, Liying LANG, Yajun PANG. Single-image super-resolution reconstruction for continuous-wave terahertz imaging systems. Infrared and Laser Engineering, 52, 20220292(2023).