• Matter and Radiation at Extremes
  • Vol. 7, Issue 5, 055902 (2022)
Jun Li1、*, Rui Yan1、2, Bin Zhao2、3, Jian Zheng2、4, Huasen Zhang5, and Xiyun Lu1
Author Affiliations
  • 1Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
  • 2Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, JiangSu 211167, China
  • 4Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 5Institute of Applied Physics and Computational Mathematics, Beijing 10094, China
  • show less
    DOI: 10.1063/5.0088058 Cite this Article
    Jun Li, Rui Yan, Bin Zhao, Jian Zheng, Huasen Zhang, Xiyun Lu. Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport[J]. Matter and Radiation at Extremes, 2022, 7(5): 055902 Copy Citation Text show less
    References

    [1] L.Rayleigh. Scientific Papers II, 200(1900).

    [2] G. I.Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. London, Ser. A, 201, 192-196(1950).

    [3] Y.Zhou. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep., 720–722, 1-136(2017).

    [4] Y.Zhou. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep., 723–725, 1-160(2017).

    [5] J. D.Lindl. Inertial Confinement Fusion(1998).

    [6] J.Meyer-ter-Vehn, S.Atzeni. The Physics of Inertial Fusion: Beam Plasma Interaction Hydrodynamics, Hot Dense Mater(2004).

    [7] R.Betti, O. A.Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435-448(2016).

    [8] C. V.Young, O. A.Hurricane, K. L.Baker, H. F.Robey, D. A.Callahan, A. B.Zylstra, A. L.Kritcher, J. S.Ross, J. E.Ralph, D. T.Caseyet?al.. Burning plasma achieved in inertial fusion. Nature, 601, 542-548(2022).

    [9] J.Ross, S.Pape, C.Weber, A.Zylstra, C.Young, L.Divol, D.Casey, K.Baker, L.Hopkins, T.D?ppner, J.Ralph, N.Meezan, D.Callahan, D.Clark, O.Hurricane, H.Robey, M.Hohenberger, A.Pak, A.Kritcher. Design of inertial fusion implosions reaching the burning plasma regime. Nat. Phys., 18, 251(2022).

    [10] A.Burrows. Supernova explosions in the universe. Nature, 403, 727-733(2000).

    [11] A. Y.Chtchelkanova, A. M.Khokhlov, V. N.Gamezo, E. S.Oran, R. O.Rosenberg. Thermonuclear supernovae: Simulations of the deflagration stage and their implications. Science, 299, 77(2003).

    [12] G.Malamud, R.Wallace, H. F.Robey, S. R.Klein, D.Shvarts, M. R.Trantham, T.Plewa, K.Raman, E. C.Harding, D.Kalantar, A. R.Miles, K. A.Flippo, D. C.Marion, C. C.Kuranz, S.MacLaren, S.Prisbrey, C. M.Krauland, J.Kline, R. P.Drake, F. W.Doss, M. J.Grosskopf, T. A.Handy, C. M.Huntington, H. S.Park, B. A.Remington, W. C.Wan, E.Giraldez, A.Shimony. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. Nat. Commun., 9, 1564(2018).

    [13] C. R.Weber, J. L.Peterson, A. G.MacPhee, B. K.Spears, D. T.Casey, E. J.Bond, F. E.Merrill, L. R.Benedetti, V. A.Smalyuk, T.D?ppner, G. P.Grim, S. W.Haan, O. L.Landen, T.Ma, N.Izumi, M.Gatu Johnson, J. A.Frenje, H. F.Robey, D. B.Sayre, D. A.Callahan, J. L.Milovich, K. N.Lafortune, B.Bachmann, S.Khan, K. L.Baker, R.Hatarik, D.Hoover, C. J.Cerjan, S. R.Nagel, B. J.MacGowan, M. J.Edwards, H.-S.Park, P. K.Patel, C. B.Yeamans, A.Pak, C. C.Widmayer, D. N.Fittinghoff, D. S.Clark, P. L.Volegov, A.Nikroo. Improved performance of high areal density indirect drive implosions at the National Ignition Facility using a four-shock adiabat shaped drive. Phys. Rev. Lett., 115, 105001(2015).

    [14] J. L.Kline, J. J.MacFarlane, H. S.Park, N.Izumi, S.Glenn, D. A.Callahan, V. A.Smalyuk, O. S.Jones, T. C.Sangster, A. J.MacKinnon, M. J.Edwards, A.Hamza, O. L.Landen, D. K.Bradley, L. J.Suter, D. R.Farley, J. D.Kilkenny, D. D.Meyerhofer, N. B.Meezan, R.Epstein, D. G.Hicks, R. L.McCrory, G. W.Collins, S. P.Regan, G. A.Kyrala, B. A.Remington, A.Nikroo, B. A.Hammel, T.Ma, R. P.Town, M. A.Barrios, R. C.Mancini, S. H.Glenzer, J.Ralph, T.D?ppner, I. E.Golovkin, C.Cerjan, P. T.Springer, S. W.Haan, K. B.Fournier, H. A.Scott, S. N.Dixit. Hot-spot mix in ignition-scale inertial confinement fusion targets. Phys. Rev. Lett., 111, 045001(2013).

    [15] E.Moses, J.Edwards, O.Landen, J.Lindl. Review of the National Ignition Campaign 2009–2012. Phys. Plasmas, 21, 020501(2014).

    [16] T. R.Dittrich, D. A.Callahan, H.-S.Park, J. D.Salmonson, P. M.Celliers, A. G.MacPhee, L. F. B.Hopkins, T.D?ppner, D. E.Hinkel, A.Pak, C.Cerjan, P. T.Springer, J. L.Milovich, B. A.Remington, J. L.Kline, T.Ma, R.Tommasini, O. A.Hurricane, E. L.Dewald, P. K.Patel, S.Le Pape, D. T.Casey. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343-348(2014).

    [17] L. C.Carlson, T. L.Bunn, A. G.MacPhee, J. D.Sater, D. T.Casey, B. J.Kozioziemski, H. F.Robey, V. A.Smalyuk, R. J.Dylla-Spears, C. R.Weber, T.D?ppner, A.Nikroo. First measurements of fuel-ablator interface instability growth in inertial confinement fusion implosions on the National Ignition Facility. Phys. Rev. Lett, 117, 075002(2016).

    [18] J.Sanz. Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion. Phys. Rev. Lett., 73, 2700-2703(1994).

    [19] V. N.Goncharov, R. L.McCrory, C. P.Verdon, R.Betti, P.Sorotokin. Self-consistent stability analysis of ablation fronts in inertial confinement fusion. Phys. Plasmas, 3, 2122(1996).

    [20] R.Betti, C. P.Verdon, R. L.McCrory, V. N.Goncharov. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas, 5, 1446(1998).

    [21] R.Morse, L.Montierth, K.Mima, H.Takabe. Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 28, 3676-3682(1985).

    [22] J. P.Knauer, S. W.Haan, S. V.Weber, J. D.Lindl, D.Munro, B. A.Hammel, B. A.Remington, C. P.Verdon, S. G.Glendinning, J. D.Kilkenny. A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas, 1, 1379-1389(1994).

    [23] R.Betti, V.Lobatchev. Ablative stabilization of the deceleration phase Rayleigh-Taylor instability. Phys. Rev. Lett., 85, 4522-4525(2000).

    [24] X.-Z.Tang, B.Srinivasan. Mitigating hydrodynamic mix at the gas-ice interface with a combination of magnetic, ablative, and viscous stabilization. Europhys. Lett., 107, 65001(2014).

    [25] S. W.Haan. Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A, 39, 5812-5825(1989).

    [26] S. W.Haan. Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys. Fluids B, 3, 2349-2355(1991).

    [27] D.Layzer. On the instability of superposed fluids in a gravitational field. Astrophys. J., 122, 1(1955).

    [28] V. N.Goncharov. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett., 88, 134502(2002).

    [29] R.Betti, J.Sanz, R.Ramis, R. P. J.Town, J.Ramírez. Nonlinear theory of the ablative Rayleigh-Taylor instability. Phys. Rev. Lett., 89, 195002(2002).

    [30] R.Ramis, R.Betti, J.Sanz, J.Ramírez. Nonlinear theory of the ablative Rayleigh–Taylor instability. Plasma Phys. Controlled Fusion, 46, B367-B380(2004).

    [31] J.Sanz, R.Betti. Bubble acceleration in the ablative Rayleigh-Taylor instability. Phys. Rev. Lett., 97, 205002(2006).

    [32] R.Yan, H.Aluie, B.Liu, A.Frank, J.Sanz, R.Betti. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability. Phys. Plasmas, 23, 022701(2016).

    [33] S.Skupsky, V. A.Smalyuk, V. N.Goncharov, D.Shvarts, S. X.Hu, D. D.Meyerhofer, T. C.Sangster. Validation of thermal-transport modeling with direct-drive, planar-foil acceleration experiments on omega. Phys. Rev. Lett., 101, 055002(2008).

    [34] R.H?rm, L.Spitzer. Transport phenomena in a completely ionized gas. Phys. Rev., 89, 977-981(1953).

    [35] R. G.Evans, D. J.Nicholas, A. R.Bell. Elecron energy transport in steep temperature gradients in laser-produced plasmas. Phys. Rev. Lett., 46, 243-246(1981).

    [36] J.Nikl, S.Weber, M.Holec. Nonlocal transport hydrodynamic model for laser heated plasmas. Phys. Plasmas, 25, 032704(2018).

    [37] R. L.Kauffman, D. E.Hinkel, M. B.Schneider, G. D.Kerbel, D. J.Strozzi, L. J.Suter, M. A.Barrios, J. D.Moody, O. L.Landen, O. S.Jones, J. M.Koning, N.Lemos, D. A.Liedahl, D. C.Eder, A. S.Moore, W. A.Farmer. Heat transport modeling of the dot spectroscopy platform on NIF. Plasma Phys. Controlled Fusion, 60, 044009(2018).

    [38] R. J.Henchen, J. P.Palastro, W.Rozmus, M.Sherlock, D. H.Froula, J.Katz, D.Cao. Observation of nonlocal heat flux using Thomson scattering. Phys. Rev. Lett., 121, 125001(2018).

    [39] M.Honda, K.Meguro, K.Mima, H.Azechi, M.Nakai, N.Miyanaga, H.Takabe, K.Shigemori. Measurements of Rayleigh-Taylor growth rate of planar targets irradiated directly by partially coherent light. Phys. Rev. Lett., 78, 250-253(1997).

    [40] R.Ishizaki, M.Honda, K.Shigemori, J. G.Wouchuk, H.Takabe, H.Shiraga, N.Miyanaga, H.Azechi, H.Nishimura, M.Nakaiet?al.. Direct-drive hydrodynamic instability experiments on the GEKKO XII laser. Phys. Plasmas, 4, 4079-4089(1997).

    [41] S. G.Glendinning, S. V.Weber, J. P.Knauer, S. N.Dixit, M. H.Key, R. J.Wallace, B. A.Remington, D. M.Pennington, B. A.Hammel, D. H.Kalantar, J. D.Kilkenny. Measurement of a dispersion curve for linear-regime Rayleigh-Taylor growth rates in laser-driven planar targets. Phys. Rev. Lett., 78, 3318-3321(1997).

    [42] H.Shiraga, M.Nakai, H.Takabe, H.Azechi, M.Matsuoka, A.Sunahara, N.Izumi, T.Yamanaka, K.Shigemori, T.Sakaiya. Ablative Rayleigh-Taylor instability at short wavelengths observed with moiré interferometry. Phys. Rev. Lett., 88, 145003(2002).

    [43] V. A.Smalyuk, R. D.Petrasso, S. X.Hu, T. C.Sangster, J. A.Frenje, B.Yaakobi, V. N.Goncharov, C.Stoeckl, D.Shvarts, D. D.Meyerhofer. Rayleigh-Taylor growth stabilization in direct-drive plastic targets at laser intensities of ∼1 × 1015 W/cm2. Phys. Rev. Lett., 101, 025002(2008).

    [44] M.Nakai, M.Honda, H.Azechi, K.Shigemori, K.Mima, A.Nishiguchi. Effects of non-local electron thermal transport on ablative Rayleigh-Taylor instability. Fusion Eng. Des., 44, 205-208(1999).

    [45] R. L.McCrory, R. C.Malone, R. L.Morse. Indications of strongly flux-limited electron thermal conduction in laser-target experiments. Phys. Rev. Lett., 34, 721(1975).

    [46] G. P.Schurtz, P. D.Nicola?, M.Busquet. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Phys. Plasmas, 7, 4238-4249(2000).

    [47] E. P.Gross, M.Krook, P. L.Bhatnagar. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94, 511-525(1954).

    [48] A.Marocchino, M.Tzoufras, J.-L.Feugeas, V.Tikhonchuk, S.Atzeni, J.Mallet, P. D.Nicola?, A.Schiavi. Comparison for non-local hydrodynamic thermal conduction models. Phys. Plasmas, 20, 022702(2013).

    [49] J. P.Brodrick, M.Sherlock, C. P.Ridgers. A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion. Phys. Plasmas, 24, 082706(2017).

    [50] A. V.Chankin, J. T.Parker, M. M.Marinak, J. P.Brodrick, M. V.Umansky, M. V.Patel, B.Dudson, R. J.Kingham, J. T.Omotani, D.Del Sorboet?al.. Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications. Phys. Plasmas, 24, 092309(2017).

    [51] J.Delettrez, G.Moses, D.Cao. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations. Phys. Plasmas, 22, 082308(2015).

    [52] H.Aluie, R.Betti, V.Gopalaswamy, R.Yan, H.Zhang. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers. Phys. Rev. E, 97, 011203(R)(2018).

    [53] D.Zhao, R.Betti, H.Aluie, D.Shvarts, R.Yan, H.Zhang. Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions. Phys. Rev. Lett., 121, 185002(2018).

    [54] D.-J.Sun, R.Yan, Z.-H.Wan, H.Aluie, R.Betti, J.Xin, J.Zheng, H.Zhang. Two mode coupling of the ablative Rayleigh-Taylor instabilities. Phys. Plasmas, 26, 032703(2019).

    [55] B.Van Leer. On the relation between the upwind-differencing schemes of Godunov, Engquist–Osher and Roe. SIAM J. Sci. Stat. Comput., 5, 1-20(1984).

    [56] W.Speares, E. F.Toro, M.Spruce. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4, 25-34(1994).

    [57] M.Grech, X.Ribeyre, G.Schurtz, P.Nicola?, V.Tikhonchuk, J.-L.Feugeas. Modeling of two-dimensional effects in hot spot relaxation in laser-produced plasmas. Phys. Plasmas, 15, 062701(2008).

    [58] T.Sakaiya, H.Shiraga, A.Sunahara, K.Shigemori, H.Azechi, K.Mima, S.Fujioka, K.Otani, M.Nakai. Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation. Phys. Plasmas, 14, 122702(2007).

    [59] V. A.Smalyuk, M. J.-E.Manuel, D. T.Casey, J. D.Hager, C. K.Li, D. D.Meyerhofer, R.Betti, S. X.Hu, J.Frenje, R. D.Petrasso, F. H.Séguin. First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas. Phys. Rev. Lett., 108, 255006(2012).

    [60] G.Dimonte, X.-Z.Tang, B.Srinivasan. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas. Phys. Rev. Lett., 108, 165002(2012).

    [61] S.Gary, J.Breil, B.Villette, F.Thais, J. L.Feugeas, O.Peyrusse, G.Soullié, C.Fourment, P. H.Maire, F.Durut, G.Schurtz, C.Chenais-Popovics, V.Tikhonchuk, S.Hulin, P.Nicola?, C.Reverdin, J. C.Gauthier. Revisiting nonlocal electron-energy transport in inertial-fusion conditions. Phys. Rev. Lett., 98, 095002(2007).

    Jun Li, Rui Yan, Bin Zhao, Jian Zheng, Huasen Zhang, Xiyun Lu. Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport[J]. Matter and Radiation at Extremes, 2022, 7(5): 055902
    Download Citation