• Opto-Electronic Engineering
  • Vol. 46, Issue 6, 180386 (2019)
Xi Rui1、2、* and Zhu Bing1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180386 Cite this Article
    Xi Rui, Zhu Bing. Experimental study on short-distance free-space transmission characteristics of OAM beam[J]. Opto-Electronic Engineering, 2019, 46(6): 180386 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital an- gular momentum of light and the transformation of La- guerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189.

    [2] O'neil A T, MacVicar I, Allen L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam[J]. Physical Review Letters, 2002, 88(5): 053601.

    [3] Grier D G. A revolution in optical manipulation[J]. Nature, 2003,424(6950): 810–816.

    [4] Chen L X, Lei J J, Romero J. Quantum digital spiral imaging[J].Light: Science & Applications, 2014, 3(3): e153.

    [5] Mirhosseini M, Maga a-Loaiza O S, O’Sullivan M N, et al.High-dimensional quantum cryptography with twisted light[J].New Journal of Physics, 2015, 17(3): 033033.

    [6] Wang J, Yang J Y, Fazal I M, et al. Demonstration of 12.8-bit/s/Hz spectral efficiency using 16-QAM signals over multiple orbital-angular-momentum modes[C]//Proceedings of the 2011 37th European Conference and Exhibition on Optical Communication, Geneva, Switzerland, 2011: 1–3.

    [7] Ren Y X, Wang Z, Xie G D, et al. Free-space optical commu- nications using orbital-angular-momentum multiplexing com- bined with MIMO-based spatial multiplexing[J]. Optics Letters, 2015, 40(18): 4210–4213.

    [8] Zhao N B, Li X Y, Li G F, et al. Capacity limits of spatially mul- tiplexed free-space communication[J]. Nature Photonics, 2015, 9(12): 822–826.

    [9] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers[J]. Op- tics Letters, 2009, 34(16): 2525–2527.

    [10] Ren H R, Li X P, Zhang Q M, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805–809.

    [11] Fazal I M, Ahmed N, Wang J, et al. 2 Tbit/s free-space data transmission on two orthogonal orbital-angular-momentum beams each carrying 25 WDM channels[J]. Optics Letters, 2012, 37(22): 4753–4755.

    [12] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplex- ing[J]. Nature Photonics, 2012, 6(7): 488–496.

    [13] Zhao Y F, Liu J, Du J, et al. Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing[C]//Proceedings of 2016 Optical Fiber Communi- cations Conference and Exhibition, Anaheim, CA, USA, 2016: 1–3.

    [14] Fried D L. Statistics of a geometric representation of wavefront distortion[J]. Journal of the Optical Society of America, 1965,55(11): 1427–1435.

    [16] Roux F S. Infinitesimal-propagation equation for decoherence of an orbital-angular-momentum-entangled biphoton state in atmospheric turbulence[J]. Physical Review A, 2011, 83(5): 053822.

    [17] Aksenov V P, Pogutsa C E. Fluctuations of the orbital angular momentum of a laser beam, carrying an optical vortex, in the turbulent atmosphere[J]. Quantum Electronics, 2008, 38(4):343–348.

    [18] Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Applied Optics, 2008, 47(13): 2414–2429.

    [19] Zhang Y X, Cang J. Effects of turbulent aberrations on proba- bility distribution of orbital angular momentum for optical com- munication[J]. Chinese Physics Letters, 2009, 26(7): 074220.

    [20] Zhao S M, Wang L, Zou L, et al. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplex- ing[J]. Optics Communications, 2016, 376: 92–98.

    [21] Malik M, O’Sullivan M, Rodenburg B, et al. Influence of at- mospheric turbulence on optical communications using orbital angular momentum for encoding[J]. Optics Express, 2012, 20(12): 13195–13200.

    [22] Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital an- gular momentum[J]. Optics Letters, 2009, 34(2): 142–144.

    [23] Rodenburg B, Lavery M P J, Malik M, et al. Influence of at- mospheric turbulence on states of light carrying orbital angular momentum[J]. Optics Letters, 2012, 37(17): 3735–3737.

    [24] Krenn M, Fickler R, Fink M, et al. Communication with spatially modulated light through turbulent air across Vienna[J]. New Journal of Physics, 2014, 16: 113028.

    [25] Lavery M P J, Peuntinger C, Günthner K, et al. Free-space propagation of high-dimensional structured optical fields in an urban environment[J]. Science Advances, 2017, 3(10): e1700552.

    [26] Ren Y X, Li M, Huang K, et al. Experimental generation of Laguerre-Gaussian beam using digital micromirror device[J]. Applied Optics, 2010, 49(10): 1838–1844.

    [27] Chen Y, Fang Z X, Ren Y X, et al. Generation and characteri- zation of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Applied Optics, 2015, 54(27): 8030–8035.

    [28] Li S X, Wang Z W. Generation of optical vortex based on computer-generated holographic gratings by photolithogra- phy[J]. Applied Physics Letters, 2013, 103(14): 141110.

    [30] Chong S H, Parthasarathy A B, Kavuri V C, et al. Intraoperative NIR diffuse optical tomography system based on spatially modulated illumination using the DLP4500 evaluation module (Conference Presentation)[J]. Proceedings of SPIE, 2017, 10117: 101170D.

    [31] Wang F X, Chen W, Li Y P, et al. Single-path Sagnac interfe- rometer with Dove prism for orbital-angular-momentum photon manipulation[J]. Optics Express, 2017, 25(21): 24946–24959.

    [32] Moreno I, Paez G, Strojnik M. Polarization transforming proper- ties of Dove prisms[J]. Optics Communications, 2003, 220(4–6): 257–268.

    [33] Jaiswal V K, Singh R P, Simon R. Producing optical vortices through forked holographic grating: study of polarization[J]. Journal of Modern Optics, 2010, 57(20): 2031–2038.

    [35] Yura H T. Short-term average optical-beam spread in a turbu- lent medium[J]. Journal of the Optical Society of America, 1973, 63(5): 567–572.

    [36] Barry J D, Mecherle G S. Beam pointing error as a significant design parameter for satellite-borne, free-space optical com- munication systems[J]. Optical Engineering, 1985, 24(6):241049.

    [37] Yang F, Cheng J L, Tsiftsis T A. Free-space optical communi- cations with generalized pointing errors[C]//Proceedings of 2013 IEEE International Conference on Communications, Bu- dapest,Hungary, 2013: 3943–3947.

    [39] Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media[M]. 2nd ed. Bellingham, WA: SPIE Press, 2005.

    [40] Beckmann P, Spizzichino A. The Scattering of Electromagnetic Waves from Rough Surfaces[M].Norwood, MA: Artech House, 1987: 511.

    [41] Vasnetsov M V, Pas'Ko V A, Soskin M S. Analysis of orbital angular momentum of a misaligned optical beam[J]. New Journal of Physics, 2005, 7(1): 46.

    [42] Abramowitz M, Stegun I A. Handbook of Mathematical Func- tions: with Formulas, Graphs, and Mathematical Tables[M]. Wash: US GPO, 1964.

    CLP Journals

    [1] Yin Xiaoli, Cui Xiaozhou, Chang Huan, Zhang Zhaoyuan, Su Yuanzhi, Zheng Tong. Research progress of orbital angular momentum modes detecting technology based on machine learning[J]. Opto-Electronic Engineering, 2020, 47(3): 190584

    Xi Rui, Zhu Bing. Experimental study on short-distance free-space transmission characteristics of OAM beam[J]. Opto-Electronic Engineering, 2019, 46(6): 180386
    Download Citation