• Photonics Research
  • Vol. 8, Issue 3, 303 (2020)
Jingshun Pan1, Bin Zhang1、4、*, Zhengyong Liu1, Jiaxin Zhao1, Yuanhua Feng3, Lei Wan3, and Zhaohui Li1、2、5、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Materials and Technologies, School of Electrical and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
  • 3Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
  • 4e-mail: zhangbin5@mail.sysu.edu.cn
  • 5e-mail: lzhh88@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.376640 Cite this Article Set citation alerts
    Jingshun Pan, Bin Zhang, Zhengyong Liu, Jiaxin Zhao, Yuanhua Feng, Lei Wan, Zhaohui Li. Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors[J]. Photonics Research, 2020, 8(3): 303 Copy Citation Text show less
    References

    [1] J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, P. C. Beard. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics, 11, 714-719(2017).

    [2] J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. Wong, L. Li, C. H. Huang, J. Zou, L. V. Wang. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods, 12, 407-410(2015).

    [3] S. Basiri-Esfahani, A. Armin, S. Forstner, W. P. Bowen. Precision ultrasound sensing on a chip. Nat. Commun., 10, 132(2019).

    [4] G. Wissmeyer, M. A. Pleitez, A. Rosenthal, V. Ntziachristos. Looking at sound: optoacoustics with all-optical ultrasound detection. Light Sci. Appl., 7, 53(2018).

    [5] C. Zhang, T. Ling, S. L. Chen, L. J. Guo. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging. ACS Photon., 1, 1093-1098(2014).

    [6] X. L. Dean-Ben, G. A. Pang, F. M. de Espinosa, D. Razansky. Non-contact optoacoustic imaging with focused air-coupled transducers. Appl. Phys. Lett., 107, 051105(2015).

    [7] K. H. Kim, W. Luo, C. Zhang, C. Tian, L. J. Guo, X. D. Wang, X. D. Fan. Air-coupled ultrasound detection using capillary-based optical ring resonators. Sci. Rep., 7, 109(2017).

    [8] B. Dong, H. Li, Z. Zhang, K. Zhang, S. Chen, C. Sun, H. F. Zhang. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection. Optica, 2, 169-176(2015).

    [9] A. Rosenthal, D. Razansky, V. Ntziachristos. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Opt. Lett., 36, 1833-1835(2011).

    [10] G. Liu, M. Han. Multiplexing fiber-optic ultrasound sensors using laser intensity modulation. Opt. Lett., 44, 751-754(2019).

    [11] T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, T. Yasui. Optical-frequency-comb based ultrasound sensor. Proc. SPIE, 10064, 100645C(2017).

    [12] Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, X. Zhang. A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-μs response time. Light Sci. Appl., 4, e300(2015).

    [13] S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, B. Dayan. Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators. Nat. Commun., 6, 6788(2015).

    [14] K. Christensen-Jeffries, R. J. Browning, M. X. Tang, C. Dunsby, R. J. Eckersley. In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles. IEEE Trans. Med. Imaging, 34, 433-440(2015).

    [15] S. N. Zheng, J. Zou, H. Cai, J. F. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. L. Kwong, A. Q. Liu. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat. Commun., 10, 2349(2019).

    [16] J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 122(2010).

    [17] D. Keng, S. R. McAnanama, I. Teraoka, S. Arnold. Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion. Appl. Phys. Lett., 91, 103902(2007).

    [18] X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, Y. F. Xiao. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics, 13, 21-24(2018).

    [19] W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [20] X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, Y. F. Xiao. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 358, 344-347(2017).

    [21] Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, Y. F. Xiao. Single nanoparticle detection using optical microcavities. Adv. Mater., 29, 1604920(2017).

    [22] L. B. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, Q. H. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 25, 5616-5620(2013).

    [23] A. Mazzei, S. Goetzinger, L. D. Menezes, G. Zumofen, O. Benson, V. Sandoghdar. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett., 99, 173603(2007).

    [24] T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala. High sensitivity nanoparticle detection using optical microcavities. Proc. Natl. Acad. Sci. USA, 108, 5976-5979(2011).

    [25] S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, L. Yang. Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation. Opt. Express, 26, 51-62(2018).

    [26] X. Jiang, A. J. Qavi, S. H. Huang, L. Yang. Whispering gallery microsensors: a review(2018).

    [27] F. Shu, X. Jiang, G. Zhao, L. Yang. A scatterer-assisted whispering-gallery-mode microprobe. Nanophotonics, 7, 1455-1460(2018).

    [28] L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 6, 428-432(2011).

    [29] C. Jin, Y. Bao, Z. Li, T. Gui, H. Shang, X. Feng, J. Li, X. Yi, C. Yu, G. Li. High-resolution optical spectrum characterization using optical channel estimation and spectrum stitching technique. Opt. Lett., 38, 2314-2316(2013).

    [30] S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, S. Soria. High Q silica microbubble resonators fabricated by arc discharge. Opt. Lett., 36, 3521-3523(2011).

    [31] C. Zhang, S. L. Chen, T. Ling, L. J. Guo. Review of imprinted polymer microrings as ultrasound detectors design, fabrication, and characterization. IEEE Sens. J., 15, 3241-3248(2015).

    [32] M. Vidakovic, I. Armakolas, T. Sun, J. Carlton, K. T. V. Grattan. Fibre Bragg grating-based acoustic sensor array for improved condition monitoring of marine lifting surfaces. J. Lightwave Technol., 34, 4336-4342(2016).

    CLP Journals

    [1] Xianglei Yan, Xihua Zou, Peixuan Li, Wei Pan, Lianshan Yan. Covert wireless communication using massive optical comb channels for deep denoising[J]. Photonics Research, 2021, 9(6): 1124

    [2] Zijie Wang, Xiaobei Zhang, Qi Zhang, Yiqi Chen, Yong Yang, Yang Yu, Yang Wang, Yanhua Dong, Yi Huang, Tingyun Wang. Monitoring and identifying pendant droplets in microbottle resonators[J]. Photonics Research, 2022, 10(3): 662

    Jingshun Pan, Bin Zhang, Zhengyong Liu, Jiaxin Zhao, Yuanhua Feng, Lei Wan, Zhaohui Li. Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors[J]. Photonics Research, 2020, 8(3): 303
    Download Citation