• Acta Optica Sinica
  • Vol. 41, Issue 10, 1006003 (2021)
Guolin Wu1、2, Zan Feng1、2, Jun Wang1、2, Jinjing Wang1、2, Minghui Zhong1、2, Tiesong Xu1、2, Xiaolin Liang1、2, Jing Xiao1、2, Xiange Wang1、2, Kai Jiao1、2, Zheming Zhao1、3, Xunsi Wang1、2、*, Peiqing Zhang1、2, Yongxing Liu1、2, Shixun Dai1、2, and Qiuhua Nie1、2
Author Affiliations
  • 1Laboratory of Infrared Materials and Devices, Research Institute of Advanced Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
  • 2Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo, Zhejiang 315211, China
  • 3Nanhu College, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • show less
    DOI: 10.3788/AOS202141.1006003 Cite this Article Set citation alerts
    Guolin Wu, Zan Feng, Jun Wang, Jinjing Wang, Minghui Zhong, Tiesong Xu, Xiaolin Liang, Jing Xiao, Xiange Wang, Kai Jiao, Zheming Zhao, Xunsi Wang, Peiqing Zhang, Yongxing Liu, Shixun Dai, Qiuhua Nie. Fabrication and Optical Properties of a Novel Seven-Core High-NA Chalcogenide Glass Fiber Based on Extrusion[J]. Acta Optica Sinica, 2021, 41(10): 1006003 Copy Citation Text show less
    References

    [1] Schliesser A, Picqué N, Hänsch T W et al. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [2] Allen M G. Diode laser absorption sensors for gas-dynamic and combustion flows[J]. Measurement Science and Technology, 9, 545-562(1998). http://www.ncbi.nlm.nih.gov/pubmed/11543363

    [3] Tandy J, Feng C, Boatwright A et al. Communication: infrared spectroscopy of salt-water complexes[J]. The Journal of Chemical Physics, 144, 121103(2016). http://europepmc.org/abstract/MED/27036420

    [4] Casey C M. Far-infrared spectral energy distribution fitting for galaxies near and far[J]. Monthly Notices of the Royal Astronomical Society, 425, 3094-3103(2012). http://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2966.2012.21455.x

    [5] Petersen C R, Prtljaga N, Farries M et al. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source[J]. Optics Letters, 43, 999-1002(2018).

    [6] Zhu Q D, Wang X S, Zhang P Q et al. Fabrication and optical properties of chalcogenide As2S3 suspended-core fiber[J]. Acta Optica Sinica, 35, 1206004(2015).

    [7] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4--13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014).

    [8] Ta’eed V G, Fu L B, Pelusi M et al. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber[J]. Optics Express, 14, 10371-10376(2006).

    [9] Lenz G, Zimmermann J, Katsufuji T et al. Large Kerr effect in bulk Se-based chalcogenide glasses[J]. Optics Letters, 25, 254-256(2000).

    [10] Cheng T L, Duan Z C, Gao W Q et al. A novel seven-core multicore tellurite fiber[J]. Journal of Lightwave Technology, 31, 1793-1796(2013).

    [11] Zhou P, Wang X L, Ma Y X et al. Beam quality and power scalability of various multicore fiber lasers[J]. Chinese Physics Letters, 26, 084205(2009).

    [12] Vyas A K. Analysis of different structure and nonlinear distortion of multicore fiber for power over fiber applications[J]. Optik, 168, 184-191(2018). http://www.sciencedirect.com/science/article/pii/S0030402618305990

    [13] Yuan L B. Multi-core fiber characteristics and its sensing applications[J]. Laser & Optoelectronics Progress, 56, 170612(2019).

    [14] Liu Y H, Li J Y. Mode properties and progress of multi-core fiber lasers[J]. Laser & Optoelectronics Progress, 53, 050005(2016).

    [15] Huo Y, Cheo P K. Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers[J]. IEEE Photonics Technology Letters, 16, 759-761(2004). http://ieeexplore.ieee.org/document/1269786

    [16] Lu Y Q, Lu Y, Feng G F et al. Fabrication and transmission characteristics of seven-core fiber[J]. Journal of Optoelectronics·Laser, 28, 269-274(2017).

    [17] Samir A, Perpar L, Batagelj B et al. Fabrication of a single-mode seven-core optical fiber using the stack-and-draw procedure[C]∥2016 International Workshop on Fiber Optics in Access Network (FOAN), October 18-19, 2016, Lisbon, Portugal., 1-4(2016).

    [18] Dorosz J, Romaniuk R S. Current developments of multicrucible technology of tailored optical fibers[J]. Proceedings of SPIE, 3731, 32-58(1999).

    [19] Liu S, Tang J Z, Liu Z J et al. Fabrication and properties of low-loss chalcogenide optical fiber based on the extrusion method[J]. Acta Optica Sinica, 36, 1006002(2016).

    [20] Kubat I, Bang O. Multimode supercontinuum generation in chalcogenide glass fibres[J]. Optics Express, 24, 2513-2526(2016).

    [21] Jiao K, Yao J M, Wang X G et al. 1.2--15.2 μm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region[J]. Optics Letters, 44, 5545-5548(2019). http://www.ncbi.nlm.nih.gov/pubmed/31730104

    [22] Xue Z G, Li Q L, Chen P et al. Mid-infrared supercontinuum in well-structured AsSe fibers based on peeled-extrusion[J]. Optical Materials, 89, 402-407(2019).

    Guolin Wu, Zan Feng, Jun Wang, Jinjing Wang, Minghui Zhong, Tiesong Xu, Xiaolin Liang, Jing Xiao, Xiange Wang, Kai Jiao, Zheming Zhao, Xunsi Wang, Peiqing Zhang, Yongxing Liu, Shixun Dai, Qiuhua Nie. Fabrication and Optical Properties of a Novel Seven-Core High-NA Chalcogenide Glass Fiber Based on Extrusion[J]. Acta Optica Sinica, 2021, 41(10): 1006003
    Download Citation