• Opto-Electronic Engineering
  • Vol. 51, Issue 3, 240003-1 (2024)
Yuanxin Guo1,2, Kun Liang1,2,*, Yangrui Xu1, Yanpeng Zhao1..., Yuanqing Wang1,3 and Bei Wang1|Show fewer author(s)
Author Affiliations
  • 1School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • 2National Key Laboratory of Multispectral Information Intelligent Processing Technology, Wuhan, Hubei 430074, China
  • 3School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
  • show less
    DOI: 10.12086/oee.2024.240003 Cite this Article
    Yuanxin Guo, Kun Liang, Yangrui Xu, Yanpeng Zhao, Yuanqing Wang, Bei Wang. Multiple environmental elements laser remote sensing method based on direct scattering spectrum[J]. Opto-Electronic Engineering, 2024, 51(3): 240003-1 Copy Citation Text show less
    References

    [1] J W Tang, G Chen, W B Chen et al. Three dimensional remote sensing for oceanography and the Guanlan ocean profiling Lidar. Natl Remote Sens Bull, 25, 460-500(2021).

    [2] D Liu, Y D Zhou, X L Zhu et al. Investigation on discrimination characteristics of atmospheric and oceanic high-spectral-resolution lidar. J Atmos Environ Opt, 15, 48-54(2020).

    [3] W Q Liu, Z Y Chen, J G Liu et al. Advances with respect to the environmental spectroscopy monitoring technology. Acta Opt Sin, 40, 0500001(2020).

    [4] B Liu, Y Yu, S Jiang. Review of advances in LiDAR detection and 3D imaging. Opto-Electron Eng, 46, 190167(2019).

    [5] Y He, S J Hu, W B Chen et al. Research progress of domestic airborne dual-frequency LiDAR detection technology. Laser Optoelectron Prog, 55, 082801(2018).

    [6] Y Z Ma, Y F Zhang, S Feng. A denoising algorithm based on neural network for side-scatter lidar signal. Opto-Electron Eng, 50, 220341(2023).

    [7] J Ke, Y S Sun, C Z Dong et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration. PhotoniX, 3, 17(2022).

    [8] R T H Collis, P B Russell, E D Hinkley. Lidar measurement of particles and gases by elastic backscattering and differential absorption. Laser Monitoring of the Atmosphere, 71-151(1976). https://doi.org/10.1007/3-540-07743-X_18

    [9] J D Klett. Stable analytical inversion solution for processing lidar returns. Appl Opt, 20, 211-220(1981).

    [10] F G Fernald. Analysis of atmospheric lidar observations: some comments. Appl Opt, 23, 652-653(1984).

    [11] B Y Liu, Q F Zhuang, S G Qin et al. Aerosol classification method based on high spectral resolution lidar. Infrared Laser Eng, 46, 411001(2017).

    [12] D Liu, Y Y Yang, Y D Zhou et al. High spectral resolution lidar for atmosphere remote sensing: a review. Infrared Laser Eng, 44, 2535-2546(2015).

    [13] M Lmaki, Y Takegoshi, T Kobayashi. Ultraviolet high-spectral-resolution Lidar with Fabry–perot filter for accurate measurement of extinction and Lidar ratio. Jpn J Appl Phys, 44, 3063-3067(2005).

    [14] G Fiocco, G Benedetti-Michelangeli, K Maischberger et al. Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar. Nat Phys Sci, 229, 78-79(1971).

    [15] Z W Huang, Y K Wang, J R Bi et al. An overview of aerosol lidar: progress and prospect. Natl Remote Sens Bull, 26, 834-851(2022).

    [16] P Chen, C Jamet, D Liu. LiDAR remote sensing for vertical distribution of seawater optical properties and chlorophyll-a from the East China Sea to the South China Sea. IEEE Trans Geosci Remote Sens, 60, 4207321(2022).

    [17] J Xu, Y N Guo, N N Luo et al. Influence of water temperature on temporal coherence of stimulated brillouin scattering. Acta Opt Sin, 40, 0929001(2020).

    [18] N Zhang, Y Ma, K Liang et al. Characteristics measurement of the ocean brillouin scattering spectrum. Opto-Electron Eng, 41, 84-88(2014).

    [19] X C Chen, G Y Dai, S H Wu et al. Coherent high-spectral-resolution lidar for the measurement of the atmospheric Mie–Rayleigh–Brillouin backscatter spectrum. Opt Express, 30, 38060-38076(2022).

    [20] D H Liu, J F Xu, R S Li et al. Measurements of sound speed in the water by Brillouin scattering using pulsed Nd: YAG laser. Opt Commun, 203, 335-340(2002).

    [21] X F Lin, L B Bu, K Liang et al. Simulation analysis of a lidar performance for atmospheric temperature profile measurements based on the Fizeau interferometer and multichannel photomultiplier tube. Microw Opt Technol Lett, 64, 650-654(2022).

    [22] X D He, H J Wei, J L Shi et al. Experimental measurement of bulk viscosity of water based on stimulated Brillouin scattering. Opt Commun, 285, 4120-4124(2012).

    [23] Y Emery, E Fry. Laboratory development of a lidar for measurement of sound velocity in the ocean using Brillouin scattering. Proc SPIE, 2963, 210-215(1997).

    [24] J Q Xu, Y Q Wang, Y R Xu et al. Research progress of ocean environmental laser remote sensing based on Brillouin scattering. Infrared Laser Eng, 50, 20211036(2021).

    [25] B Zhou, Q M Fan, Y Ma et al. Experimental analysis on the rapid measurement of a high precision Brillouin scattering spectrum in water using a Fabry-Pérot etalon. Laser Phys Lett, 13, 055701(2016).

    [27] J W Shi, W P Gong, J H Bai et al. Brillouin scattering and its application in LiDAR. Physics, 36, 777-782(2007).

    [28] J Liu, M Q Shi, Z Chen et al. Quantum photonics based on metasurfaces. Opto-Electron Adv, 4, 200092(2021).

    [29] Y L Liu, Y C Zhang, J Su et al. Rotational Raman lidar for atmospheric temperature profiles measurements in the lower-air. Opto-Electron Eng, 33, 43-48(2006).

    [30] X Y Ren, L Wang, Z S Tian et al. Study on practical Raman Lidar seawater temperature remote sensing system. Spectrosc Spect Anal, 39, 778-783(2019).

    [31] D P Yuan, J Xu, Z Liu et al. High resolution stimulated Brillouin scattering lidar using Galilean focusing system for detecting submerged objects. Opt Commun, 427, 27-32(2018).

    [32] Y Q Wang, W Ubachs, de Water W van. Bulk viscosity of CO2 from Rayleigh-Brillouin light scattering spectroscopy at 532 nm. J Chem Phys, 150, 154502(2019).

    [33] T F Li, D X Ba, D W Zhou et al. Recent progress in optical fiber sensing based on forward stimulated Brillouin scattering. Opto-Electron Eng, 49, 220021(2022).

    [34] J C Shang, T Wu, C Y Yang et al. Pressure and temperature retrieval of nitrogen respectively by analysis of spontaneous Rayleigh–Brillouin scattering profiles. Opt Commun, 436, 127-133(2019).

    [35] B Witschas, Z Y Gu, W Ubachs. Temperature retrieval from Rayleigh-Brillouin scattering profiles measured in air. Opt Express, 22, 29655-29667(2014).

    [36] K Liang, J Q Xu, Y Q Wang et al. Grüneisen approach for universal scaling of the Brillouin shift in gases. New J Phys, 24, 103005(2022).

    [37] B Witschas, C Lemmerz, O Reitebuch. Daytime measurements of atmospheric temperature profiles (2–15 km) by lidar utilizing Rayleigh–Brillouin scattering. Opt Lett, 39, 1972-1975(2014).

    [38] J G Hirschberg, J D Byrne, A W Wouters et al. Speed of sound and temperature in the ocean by Brillouin scattering. Appl Opt, 23, 2624-2628(1984).

    [39] E S Fry, Y Emery, X H Quan et al. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean. Appl Opt, 36, 6887-6894(1997).

    [40] W Gao, Z W Lü, Y K Dong et al. A new approach to measure the ocean temperature using Brillouin lidar. Chin Opt Lett, 4, 428-431(2006).

    [41] Y Ma, K Liang, H Lin et al. Study on simultaneous measurement of temperature and salinity based on brillouin scattering. Acta Opt Sin, 28, 1508-1512(2008).

    [42] K Liang, Y Ma, Y Yu et al. Research on simultaneous measurement of ocean temperature and salinity using Brillouin shift and linewidth. Opt Eng, 51, 066002(2012).

    [43] Y Yu, Y Ma, H Li et al. Simulation of simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin Lidar. Laser Phys Lett, 11, 036001(2014).

    [44] P B Hays, C J Richey, A B Hays et al. Optical air data system.

    [45] B Witschas. Analytical model for Rayleigh-Brillouin line shapes in air. Appl Opt, 50, 267-270(2011).

    [46] Y Ma, F Fan, K Liang et al. An analytical model for Rayleigh–Brillouin scattering spectra in gases. J Opt, 14, 095703(2012).

    [47] K Liang, J Q Xu, P Zhang et al. Temperature dependence of the Rayleigh brillouin spectrum linewidth in air and nitrogen. Sensors, 17, 1503(2017).

    [48] P Zhang, J Q Xu, R Z Zhang et al. Retrieval of gas temperature and pressure based on Rayleigh–brillouin spectrum. IEEE Access, 8, 22964-22975(2020).

    [49] J Q Xu. Study on gas Rayleigh-brillouin scattering spectral characteristics and spectral detection technology, 60-83(2021).

    [50] B Wang. Simultaneous measurement of atmospheric temperature and pressure profiles based on Rayleigh-Brillouin scattering spectrum, 21-34(2023).

    [51] K Schorstein, A Popescu, M Göbel et al. Remote water temperature measurements based on Brillouin scattering with a frequency doubled pulsed Yb: doped fiber amplifier. Sensors, 8, 5820-5831(2008).

    [52] E Fry, J Katz, D H Liu et al. Temperature dependence of the Brillouin linewidth in water. J Mod Opt, 49, 411-418(2002).

    [53] Z Y Gu, M O Vieitez, Duijn E J van et al. A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths. Rev Sci Instrum, 83, 053112(2012).

    [54] Y Q Wang, Z Y Gu, K Liang et al. Rayleigh-Brillouin light scattering spectroscopy of air; experiment, predictive model and dimensionless scaling. Mol Phys, 119, e1804635(2021).

    [55] J Shi, M Ouyang, W Gong et al. A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean. Appl Phys B, 90, 569-571(2008).

    [56] K Liang, Y Ma, J Huang et al. Precise measurement of Brillouin scattering spectrum in the ocean using F–P etalon and ICCD. Appl Phys B, 105, 421-425(2011).

    [57] N Xu, B Zhang, N N Luo et al. Simultaneous inversion of seawater temperature and salinity based on stimulated brillouin scattering. Acta Opt Sin, 42, 2429001(2022).

    [58] J Huang, Y Ma, B Zhou et al. Processing method of spectral measurement using F-P etalon and ICCD. Opt Express, 20, 18568(2012).

    [59] K Liang, R Zhang, Q Sun et al. Brillouin shift and linewidth measurement based on double-edge detection technology in seawater. Appl Phys B, 126, 160(2020).

    [60] Y Q Wang, J H Zhang, Y C Zheng et al. Brillouin scattering spectrum for liquid detection and applications in oceanography. Opto-Electron Adv, 6, 220016(2023).

    [61] J Q Xu, B Witschas, K Liang et al. Characterization of a novel temperature Lidar receiver by means of laboratory Rayleigh-Brillouin scattering measurements. EPJ Web Conf, 237, 07004(2020).

    [62] B Witschas, C Lemmerz, O Lux et al. Airborne temperature profiling in the troposphere during daytime by lidar utilizing Rayleigh–Brillouin scattering. Opt Lett, 46, 4132-4135(2021).

    [63] J Q Xu, B Witschas, P Kableka et al. High-spectral-resolution lidar for measuring tropospheric temperature profiles by means of Rayleigh–Brillouin scattering. Opt Lett, 46, 3320-3323(2021).

    [64] Y Q Wang, Y R Xu, P Chen et al. Remote sensing of seawater temperature and salinity profiles by the Brillouin Lidar based on a Fizeau interferometer and multichannel photomultiplier tube. Sensors, 23, 446(2023).

    [65] Z K Meng, V V Yakovlev. Precise determination of Brillouin scattering spectrum using a virtually imaged phase array (VIPA) spectrometer and charge-coupled device (CCD) Camera. Appl Spectrosc, 70, 1356-1363(2016).

    [66] H D Yan, T Wu, S H Pi et al. Demonstration of a Rayleigh–Brillouin scattering spectrometer with a high spectral resolution for rapid gas temperature detection. Opt Lett, 48, 5931-5934(2023).

    [67] U Marksteiner, C Lemmerz, O Lux et al. Calibrations and wind observations of an airborne direct-detection wind LiDAR Supporting ESA’s Aeolus Mission. Remote Sens, 10, 2056(2018).

    [68] C L Korb, B M Gentry, C Y Weng. Edge technique: theory and application to the lidar measurement of atmospheric wind. Appl Opt, 31, 4202(1992).

    [69] W X Guo, F H Shen, W J Shi et al. Data inversion method for dual-frequency Doppler lidar based on Fabry-Perot etalon quad-edge technique. Optik, 159, 31-38(2018).

    Yuanxin Guo, Kun Liang, Yangrui Xu, Yanpeng Zhao, Yuanqing Wang, Bei Wang. Multiple environmental elements laser remote sensing method based on direct scattering spectrum[J]. Opto-Electronic Engineering, 2024, 51(3): 240003-1
    Download Citation