• Journal of Innovative Optical Health Sciences
  • Vol. 13, Issue 6, 2050028 (2020)
Zvi Hai Barnea (Burbea)1、2, Shmuel Zimlichman3, and David Abookasis3
Author Affiliations
  • 1Nephrology Department, Edith Wolfson Hospital, Holon 5822012, Israel
  • 2Sackler Faculty of Medicine, Tel Aviv University P. O. Box 39040, Tel Aviv 6997801, Israel
  • 3Department of Electrical and Electronics Engineering Ariel University, Ariel 4070000, Israel
  • show less
    DOI: 10.1142/s1793545820500285 Cite this Article
    Zvi Hai Barnea (Burbea), Shmuel Zimlichman, David Abookasis. Diffuse transmitted spectroscopy in conjunction with spectral peak averaging as a potential tool for noninvasive creatinine screening[J]. Journal of Innovative Optical Health Sciences, 2020, 13(6): 2050028 Copy Citation Text show less
    References

    [1] R. Cooper, F. Naclerio, J. Allgrove, A. Jimenez, "Creatine supplementation with specific view to exercise/sports performance: An update," J. Int. Soc. Sports. Nutr. 9(1), 33 (2012).

    [2] G. Winnett, L. Cranfield, M. Almond, "Apparent renal disease due to elevated creatinine levels associated with the use of boldenone," Nephrol. Dial. Transplant. 26(2), 744–747 (2011).

    [3] I. H. Perkins, C. M. Chapman, Creatinine: Production, Diagnostic Uses and Role in Renal Disease, Nova Science Publishers, New York (2012).

    [4] M. Peake, M. Whiting, "Measurement of serum creatinine — current status and future goals," Clin. Biochem. Rev. 27(4), 173–184 (2006).

    [5] E. Cholongitas, L. Marelli, A. Kerry, M. Senzolo, D. W. Goodier, D. Nair, M. Thomas, D. Patch, A. K. Burroughs, "Different methods of creatinine measurement significantly affect MELD scores," Liver Transpl. 13(4), 523–529 (2007).

    [6] D. Tambaru, R. H. Rupilu, F. Nitti, I. Gauru, S. Suwari, "Development of paper-based sensor coupled with smartphone detector for simple creatinine determination," AIP Conf. Proc. 1823, 020095 (2017).

    [7] R. A. Shaw, S. Kotowich, H. H. Mantsch, M. Leroux, "Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy," Clin. Biochem. 29(1), 11–19 (1996).

    [8] J. L. Pezzaniti, T. W. Jeng, L. McDowell, G. M. Oosta, "Preliminary investigation of near-infrared spectroscopic measurements of urea, creatinine, glucose, protein, and ketone in urine," Clin. Biochem. 34(3), 239–246 (2001).

    [9] M. L. de Almeida, C. J. Saatkamp, A. B. Fernandes, A. L. B. Pinheiro, L. Silveira, Jr., "Estimating the concentration of urea and creatinine in the human serum of normal and dialysis patients through Raman spectroscopy," Lasers Med. Sci. 31(7), 1415–1423 (2016).

    [10] D. P. Jer?nimo, R. A. de Souza, F. F. da Silva, G. L. Camargo, H. L. Miranda, M. Xavier, K. K. Sakane, W. Ribeiro, "Detection of creatine in rat muscle by FTIR spectroscopy," Ann. Biomed. Eng. 40(9), 2069–2077 (2012).

    [11] D. Gangopadhyay, P. Sharma, R. Nandi, M. Das, S. Ghosh, R. K. Singh, "In vitro concentration dependent detection of creatinine: A surface enhanced Raman scattering and fluorescence study," RSC Adv. 6, 112562–112567 (2016).

    [12] Y.-S. Li, J. S. Church, "Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials," J. Food Drug Anal. 22(1), 29–48 (2014).

    [13] N. Lewen, "The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals," J. Pharm. Biomed. Anal. 55(4), 653–661 (2011).

    [14] E. W. Ciurczak, "Growth of near-infrared spectroscopy in pharmaceutical and medical sciences," Proc. SPIE 4626, 116–125 (2002).

    [15] D. A. Boas, C. Pitris, N. Ramanujam (Eds.), Handbook of Biomedical Optics, 1st Edition, CRC Press, Boca Raton (2011).

    [16] C.-Y. Wang, T.-C. Kao, Y.-F. Chen, W.-W. Su, H.- J. Shen, K.-B. Sung, "Validation of an inverse fitting method of diffuse reflectance spectroscopy to quantify multi-layered skin optical properties," Photonics 6(2), 61 (2019).

    [17] D. C. Aiken, S. Ramsey, T. Mayo, J. Bellemare, S. G. Lambrakos, J. Peak, "Inverse analysis of near infrared transmission spectra for triarylamine, tetraaryldiamine, nickel dithiolene and indolium-iodide dyes," J. Near Infrared Spectrosc. 23(3), 123–132 (2015).

    [18] J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, Jr., R. R. Dasari, M. S. Feld, "Real-time Raman system for in vivo disease diagnosis," J. Biomed. Opt. 10(3), 031113 (2007).

    [19] A. Y. Khaled, S. A. Aziz, S. K. Bejo, N. M. Nawi, I. A. Seman, D. I. Onwude, "Early detection of diseases in plant tissue using spectroscopy — applications and limitations," Appl. Spectrosc. Rev. 53(1), 36–64 (2018).

    [20] A. E. Cerussi, N. S. Shah, D. Hsiang, A. Durkin, J. A. Butler, B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11 (4), 044005 (2006).

    [21] C. J. Saatkamp, M. L. de Almeida, J. A. M. Bispo, A. L. B. Pinheiro, A. B. Fernandes, L. Silveira, Jr., "Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease," J. Biomed. Opt. 21(3), 037001 (2016).

    [22] Z. H. Barnea, D. Abookasis, "Determination of creatinine level in patient blood samples by Fourier NIR spectroscopy and multivariate analysis in comparison with biochemical assay," J. Innov. Opt. Health Sci. 12(6), 1950015 (2019).

    [23] I. J. Bigio, S. Fantini, Overview of tissue optical properties, Quantitative Biomedical Optics: Theory, Methods, and Applications, pp. 19–59, Cambridge University Press, Cambridge (2016).

    [24] R. Nachabe, B. H. W. Hendriks, M. van der Voort, A. E. Desjardins, H. J. C. M. Sterenborg, "Estimation of biological chromophores using diffuse optical spectroscopy: Benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm," Opt. Express 18(24), 1432–1442 (2010).

    [25] P. J. Rousseeuw, A. M. Leroy, Robust Regression and Outlier Detection, John Wiley & Sons, Inc., New York (1987).

    Zvi Hai Barnea (Burbea), Shmuel Zimlichman, David Abookasis. Diffuse transmitted spectroscopy in conjunction with spectral peak averaging as a potential tool for noninvasive creatinine screening[J]. Journal of Innovative Optical Health Sciences, 2020, 13(6): 2050028
    Download Citation