• Frontiers of Optoelectronics
  • Vol. 2, Issue 1, 9 (2009)
Jian WANG*, Junqiang SUN, Weiwei ZHANG, and Zhefeng HU
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-008-0074-5 Cite this Article
    Jian WANG, Junqiang SUN, Weiwei ZHANG, Zhefeng HU. Simulation of 40 Gbit/s NRZ to RZ format conversion based on sum-frequency generation using a PPLN loop mirror[J]. Frontiers of Optoelectronics, 2009, 2(1): 9 Copy Citation Text show less
    References

    [1] Bigo S, Desurvire E, Gauchard S, et al. Bit-rate enhancement through optical NRZ-to-RZ conversion and passive timedivision multiplexing for soliton transmission systems. Electronics Letters, 1994, 30(12): 984-985

    [2] Chow C W, Wong C S, Tsang H K. All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking. Optics Communications, 2002, 209(4-6): 329-334

    [3] Xu L, Wang B C, Baby V, et al. All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter. IEEE Photonics Technology Letters, 2003, 15(2): 308-310

    [4] Langrock C, Kumar S, McGeehan J E, et al. All-optical signal processing using χ(2) nonlinearities in guided-wave devices. Journal of Lightwave Technology, 2006, 24(7): 2579-2592

    [5] Xu C Q, Okayama H, Kawahara M. 1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide. Applied Physics Letters, 1993, 63(26): 3559-3561

    [6] Chou M H, Brener I, Fejer M M, et al. 1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photonics Technology Letters, 1999, 11(6): 653-655

    [7] Xu C Q, Bracken J, Chen B. Intracavity wavelength conversions employing a MgO-doped LiNbO3 quasi-phase-matched waveguide and an erbium-doped fiber amplifier. Journal of the Optical Society of America B-Optical Physics, 2003, 20(10): 2142-2149

    [8] Min Y H, Lee J H, Lee Y L, et al. Tunable all-optical wavelength conversion of 5ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide. In: Tech Dig OFC’03, 2003, 2: 767-768

    [9] Xu C Q, Chen B. Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation. Optics Letters, 2004, 29(3): 292-294

    [10] Yu S, Gu W. Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG + DFG interactions. IEEE Journal of Quantum Electronics, 2004, 40(11): 1548-1554

    [11] Lee Y L, Yu B-A, Jung C, et al. All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide. Optics Express, 2005, 13(8): 2988-2993

    [12] Wang Jian, Sun Junqiang, Luo Chuanhong, et al. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG + DFG) in LiNbO3 waveguides. Optics Express, 2005, 13(19): 7405-7414

    [13] Wang Jian, Sun Junqiang, Kurz J R, et al. Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser. IEEE Photonics Technology Letters, 2006, 18(20): 2093-2095

    [14] Wang Jian, Sun Junqiang, Luo Chuanhong, et al. Flexible alloptical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide. Applied Physics B-Lasers and Optics, 2006, 83(4): 543-548

    [15] Wang Jian, Sun Junqiang. Observation of 40-Gbit/s tunable wavelength down- and up-conversions based on cascaded second-order nonlinearity in LiNbO3 waveguides. Optical Engineering, 2007, 46(2): 025005

    [16] Wang Jian, Sun Junqiang, Zhang Xinliang, et al. Experimental observation of tunable wavelength down- and up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide. Optics Communications, 2007, 269(1): 179-187

    [17] Sun Junqiang, Huang Dexiu, Liu Deming. Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO3 waveguides. Optics Communications, 2006, 259(1): 321-327

    [18] Wang Jian, Sun Junqiang, Sun Qizhen. Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation. Optics Letters, 2006, 31(11): 1711-1713

    [19] Wang Jian, Sun Junqiang, Sun Qizhen. Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation. Optics Express, 2007, 15(4): 1690-1699

    [20] Wang Jian, Sun Junqiang, Sun Qizhen. Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation. IEEE Photonics Technology Letters, 2007, 19(8): 541-543

    [21] Sun Junqiang, Wang Jian. Simulation of optical NOT gate switching by sum-frequency generation in LiNbO3 waveguides. Optics Communications, 2006, 267(1): 187-192

    [22] Lee Y L, Yu B-A, Eom T J, et al. All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide. Optics Express, 2006, 14(7): 2776-2782

    [23] Wang Jian, Sun Junqiang. NOLM-based all-optical 40 Gbit/s format conversion through sum-frequency generation (SFG) in a PPLN waveguide. In: Proceedings of SPIE, 2005, 6021: 60212H

    [24] Wang Jian, Sun Junqiang, Sun Qizhen, et al. Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation. Optics Express, 2007, 15(2): 583-588

    [25] Wang Jian, Sun Junqiang, Sun Qizhen. Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror. Optics Letters, 2007, 32(11): 1477-1479

    Jian WANG, Junqiang SUN, Weiwei ZHANG, Zhefeng HU. Simulation of 40 Gbit/s NRZ to RZ format conversion based on sum-frequency generation using a PPLN loop mirror[J]. Frontiers of Optoelectronics, 2009, 2(1): 9
    Download Citation