[1] D A CLARK. New methods for interpretation of magnetic vector and gradient tensor data II: application to the Mount Leyshon anomaly, Queensland, Australia. Exploration Geophysics, 44, 114-127(2013).
[2] A SORRENTINO, G LURIA, R ARAMINI. Bayesian multi-dipole modelling of a single topography in MEG by adaptive sequential Monte Carlo samplers. Inverse Problems, 30(2014).
[3] C HANSEN.
[4] 4李金朋, 任国全, 张英堂, 等. 改进二维变分模态分解的磁源分离[J]. 光学 精密工程, 2020, 28(5): 1200-1211. doi: 10.3788/OPE.20202805.1200LIJ P, RENG Q, ZHANGY T, et al. Source separation based on improved two-dimensional variational mode decomposition[J]. Opt. Precision Eng., 2020, 28(5): 1200-1211.(in Chinese). doi: 10.3788/OPE.20202805.1200
[5] Q Z LI, Z Y SHI, Z N LI et al. Preferred configuration and detection limits estimation of magnetic gradient tensor system. IEEE Transactions on Instrumentation and Measurement, 70, 1-14(2021).
[6] 6李青竹, 李志宁, 张英堂, 等. 磁梯度张量系统传感器阵列的快速旋转校准[J]. 光学 精密工程, 2018, 26(7): 1813-1826. doi: 10.3788/ope.20182607.1813LIQ Z, LIZ N, ZHANGY T, et al. Fast rotation calibration of sensor array in magnetic gradient tensor system[J]. Opt. Precision Eng., 2018, 26(7): 1813-1826.(in Chinese). doi: 10.3788/ope.20182607.1813
[7] 7李青竹, 李志宁, 张英堂, 等. 张量衍生不变关系下的磁源单点定位[J]. 光学 精密工程, 2019, 27(8): 1880-1893. doi: 10.3788/ope.20192708.1880LIQ Z, LIZ N, ZHANGY T, et al. Magnetic source single-point positioning by tensor derivative invariant relations[J]. Opt. Precision Eng., 2019, 27(8): 1880-1893.(in Chinese). doi: 10.3788/ope.20192708.1880
[8] 8李青竹, 李志宁, 张英堂, 等. 基于二阶磁张量欧拉反褶积的磁源单点定位方法[J]. 石油地球物理勘探, 2019, 54(4): 915-924, 727. doi: 10.13810/j.cnki.issn.1000-7210.2019.04.024LIQ Z, LIZ N, ZHANGY T, et al. Magnetic source single-point positioning based on second-order magnetic tensor Euler deconvolution[J]. Oil Geophysical Prospecting, 2019, 54(4): 915-924, 727.(in Chinese). doi: 10.13810/j.cnki.issn.1000-7210.2019.04.024
[9] R O HANSEN, M SIMMONDS. Multiple-source Werner deconvolution. GEOPHYSICS, 58, 1792-1800(1993).
[10] R O HANSEN. 3D multiple-source Werner deconvolution for magnetic data. GEOPHYSICS, 70, L45-L51(2005).
[11] 11王林飞, 郭灿灿, 薛典军, 等. 磁梯度张量解析信号分析法及其在场源位置识别中的应用[J]. 地球物理学进展, 2016, 31(3): 1164-1172. doi: 10.6038/pg20160333WANGL F, GUOC C, XUED J, et al. Analytic signals of magnetic gradient tensor and their application to estimate source location[J]. Progress in Geophysics, 2016, 31(3): 1164-1172.(in Chinese). doi: 10.6038/pg20160333
[12] 12李金朋, 张英堂, 范红波, 等. 基于磁传感器阵列的多磁源参数反演方法[J]. 仪器仪表学报, 2019, 40(10): 28-37. doi: 10.19650/j.cnki.cjsi.J1905361LIJ P, ZHANGY T, FANH B, et al. Multi-magnetic source parameter inversion method based on magnetic sensor array[J]. Chinese Journal of Scientific Instrument, 2019, 40(10): 28-37.(in Chinese). doi: 10.19650/j.cnki.cjsi.J1905361
[13] H UGALDE, W A MORRIS. Cluster analysis of Euler deconvolution solutions: new filtering techniques and geologic strike determination. GEOPHYSICS, 75, L61-L70(2010).
[14] J C BEZDEK, R EHRLICH, W FULL. FCM: the fuzzy c-means clustering algorithm. Computers & Geosciences, 10, 191-203(1984).
[15] K DAVIS, Y G LI, M NABIGHIAN. Automatic detection of UXO magnetic anomalies using extended Euler deconvolution. GEOPHYSICS, 75, G13-G20(2010).
[16] H J SUN, S R WANG, Q S JIANG. FCM-based model selection algorithms for determining the number of clusters. Pattern Recognition, 37, 2027-2037(2004).
[17] M REN, P Y LIU, Z H WANG et al. A self-adaptive fuzzy
[18] D A CLARK. New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength. Exploration Geophysics, 43, 267-282(2012).
[19] H G MILLER, V SINGH. Potential field tilt—a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213-217(1994).
[20] 20尹刚, 张英堂, 李志宁, 等. 磁偶极子梯度张量的几何不变量及其应用[J]. 地球物理学报, 2016(2): 749-756. doi: 10.6038/cjg20160232YING, ZHANGY T, LIZ N, et al. Research on geometric invariant of magnetic gradient tensors for a magnetic dipole source and its application[J]. Chinese Journal of Geophysics, 2016(2): 749-756.(in Chinese). doi: 10.6038/cjg20160232
[21] N R PAL, J C BEZDEK. On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems, 3, 370-379(1995).
[22] X L XIE, G BENI. A validity measure for fuzzy clustering. IEEE Transactions on pattern analysis and machine intelligence, 13, 841-847(1991).
[23] A M BENSAID, L O HALL, J C BEZDEK et al. Validity-guided (re)clustering with applications to image segmentation. IEEE Transactions on Fuzzy Systems, 4, 112-123(1996).
[24] Q Z LI, Z Y SHI, Z N LI et al. Magnetic object positioning based on second-order magnetic gradient tensor system. IEEE Sensors Journal, 21, 18237-18248(2021).