• Optics and Precision Engineering
  • Vol. 30, Issue 20, 2523 (2022)
Qingzhu LI, Zhining LI*, Zhiyong SHI, and Hongbo FAN
Author Affiliations
  • Department of Vehicle and Electrical Engineering, Army Engineering University of PLA, Shijiazhuang050003, China
  • show less
    DOI: 10.37188/OPE.20223020.2523 Cite this Article
    Qingzhu LI, Zhining LI, Zhiyong SHI, Hongbo FAN. Multi-target magnetic positioning with the adaptive fuzzy c-means clustering and tensor invariants[J]. Optics and Precision Engineering, 2022, 30(20): 2523 Copy Citation Text show less

    Abstract

    To achieve synchronous positioning of multi-target magnetic dipoles with different locations, moments, and buried depths, a multi-target positioning method based on adaptive fuzzy c-means (AFCM) clustering and tensor invariants is proposed. First, based on the 2D plane grid measurement of a magnetic gradient tensor system, the target distribution area is pre-identified by using the improved tilt angle with the invariants of normalized source strength and tensor contraction. Subsequently, the tensor-derivative invariant-relation positioning method is applied to calculate the initial coordinate points of the magnetic dipoles at grid nodes in the recognition area; these points form a dense point cloud around the real position space of the magnetic source. Finally, the AFCM clustering algorithm is employed to perform 3D clustering on these point clouds of initial position solutions and automatically detect the number of cluster centroids. The estimated number of cluster centroids is the number of targets, and the cluster centroids are the target position coordinates. Then, the tensor matrix and position vector can be used to calculate the magnetic dipole moment. Simulations show that in a Gaussian noise environment with a variance of 5 nT/m, the target-number estimation accuracy of 20 magnetic dipole targets is 100%, horizontal-position estimation accuracy is greater than 91.7%, and buried-depth estimation accuracy is greater than 85.6%. Measurements reveal that the coordinate deviation of the small magnets in the measuring areas of 2.1 m × 2.1 m and 1.2 m × 1.2 m is less than 0.091 m.
    G=gxxgxygxzgyxgyygyzgzxgzygzz=v1v3v2λ1λ3λ2v1v3v2-1(1)

    View in Article

    I0=tr G=λ1+λ2+λ3=gxx+gyy+gzz=0I1=λ1λ2+λ2λ3+λ1λ3=gxxgyy+gxxgyy+gxxgyy-gxy2-gyz2-gxz2I2=det G=λ1λ2λ3=gxxgyygzz+2gxygxzgyz-gxz2gyy-gyz2gxx-gxy2gzzc=GF=gxx2+gyy2+gzz2+2gxy2+gyz2+gxz2u=-λ32-λ1λ2(2)

    View in Article

    θTilt=arctan U/zU/x2+U/y2(3)

    View in Article

    θNSSTilt=arctan  u/zu/x2+u/y2+u/z2,(4)

    View in Article

    θCTTilt=arctan  c/zc/x2+c/y2+c/z2.(4)

    View in Article

    <inline-formula><alternatives><math id="M15" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mtable><mtr><mtd><mi>θ</mi><mo>=</mo><mi mathvariant="normal">a</mi><mi mathvariant="normal">r</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">s</mi><mtext> </mtext><mfenced separators="|"><mrow><mfrac><mrow><mi mathvariant="bold-italic">m</mi><mo>⋅</mo><mi mathvariant="bold-italic">r</mi></mrow><mrow><mfenced open="‖" close="‖" separators="|"><mrow><mi mathvariant="bold-italic">m</mi></mrow></mfenced><mo>⋅</mo><mfenced open="‖" close="‖" separators="|"><mrow><mi mathvariant="bold-italic">r</mi></mrow></mfenced></mrow></mfrac></mrow></mfenced><mo>=</mo><mi mathvariant="normal">a</mi><mi mathvariant="normal">r</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">s</mi><mfenced separators="|"><mrow><mfrac><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub></mrow><mrow><mroot><mrow><mo>-</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup><mo>-</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub><msub><mrow><mi>λ</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow><mrow /></mroot></mrow></mfrac></mrow></mfenced><mo>=</mo></mtd></mtr><mtr><mtd><mtext>                                      </mtext><mi mathvariant="normal">a</mi><mi mathvariant="normal">r</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">s</mi><mtext> </mtext><mfrac><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn mathvariant="normal">3</mn></mrow></msub></mrow><mrow><mi>u</mi></mrow></mfrac><mo>.</mo><mtext>                                 </mtext><mo stretchy="false">(</mo><mn mathvariant="normal">5</mn><mo stretchy="false">)</mo></mtd></mtr></mtable></math><graphic specific-use="big" xlink:href="alternativeImage/3FB4148C-1956-46c4-8CA5-6B3965B32EFA-M015.jpg" xmlns:xlink="http://www.w3.org/1999/xlink"><?fx-imagestate width="76.28466797" height="21.84399986"?></graphic><graphic specific-use="small" xlink:href="alternativeImage/3FB4148C-1956-46c4-8CA5-6B3965B32EFA-M015c.jpg" xmlns:xlink="http://www.w3.org/1999/xlink"><?fx-imagestate width="76.28466797" height="21.84399986"?></graphic></alternatives></inline-formula>(6)

    View in Article

    v3m×r=±v3m×rv1×v2m×r=±v1×v2m×r(6)

    View in Article

    r=±3t4cos2θ+2c3cos2θ+1λ3-λ1λ2-λ1v1v1±3t4cos2θ+2c3cos2θ+1λ2-λ3λ2-λ1v2v2(7)

    View in Article

    uikm=j=1cri-vkrj-vk21-mvk=i=1nuikmrii=1nuikm(8)

    View in Article

    JmU,V=k=1ci=1nuikmri-vk2(9)

    View in Article

    LU,V=k=1c1nki=1nuikmri-vk2+p1c-1j=1cvj-vk2,pU,V=vk-v¯2c,(10)

    View in Article

    m=K3r04Gcr˜0-32r˜0TGcr˜0r˜0(11)

    View in Article

    PTEA=minPr-Pei-PrPr×100%(12)

    View in Article

    Qingzhu LI, Zhining LI, Zhiyong SHI, Hongbo FAN. Multi-target magnetic positioning with the adaptive fuzzy c-means clustering and tensor invariants[J]. Optics and Precision Engineering, 2022, 30(20): 2523
    Download Citation