• Photonic Sensors
  • Vol. 12, Issue 1, 74 (2022)
Kediliya WUMAIER1, Gulgina MAMTMIN2, Qingrong MA1, Asiya MAIMAITI1, Patima NIZAMIDIN1, and Abliz YIMIT1、*
Author Affiliations
  • 1College of Chemical Engineering, Xinjiang University, Urumqi 830046, China
  • 2College of Chemistry and Environmental Science, Kashgar University, Kashgar 844006, China
  • show less
    DOI: 10.1007/s13320-021-0623-8 Cite this Article
    Kediliya WUMAIER, Gulgina MAMTMIN, Qingrong MA, Asiya MAIMAITI, Patima NIZAMIDIN, Abliz YIMIT. Zinc Phthalocyanine Thin Film-Based Optical Waveguide H2S Gas Sensor[J]. Photonic Sensors, 2022, 12(1): 74 Copy Citation Text show less
    References

    [1] F. I. M. Ali, F. Awwad, Y. E. Greish, and S. T. Mahnoud, “Hydrogen sulfide (H2S) gas sensor: a review,” IEEE Sensors Journal, 2018, 19(7): 2394–2407.

    [2] X. D. Hao, C. Ma, X. Yang, T. Liu, B. Wang, F. M. Liu, et al., “YSZ-based mixed potential H2S sensor using La2NiO4 sensing electrode,” Sensors and Actuators B: Chemical, 2018, 255: 3033–3039.

    [3] V. Balasubramani, S. Sureshkumar, T. Rao, and T. M. Sridhar, “Impedance spectroscopy-based reduced graphene oxide-incorporated ZnO composite sensor for H2S investigations,” ACS Omega, 2019, 4(6): 9976–9982.

    [4] R. Kitture, D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Nanocomposite modified optical fiber: a room temperature, selective H2S gas sensor: studies using ZnO-PMMA,” Journal of Alloys and Compounds, 2017, 695: 2091–2096.

    [5] J. Sarfraz, P. Ihalainen, A. Maattanen, T. Gulin, J. Koskela, C. E. Wilen, et al., “A printed H2S sensor with electro-optical response,” Sensors and Actuators B: Chemical, 2014, 191: 821–827.

    [6] Y. X. Nie, P. Deng, Y. Y. Zhao, P. L. Wang, L. L. Xing, Y. Zhang, et al., “The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H2S sensor,” Nanotechnology, 2014, 25(26): 265501.

    [7] J. T. Zhang, Z. J. Zhu, C. M. Chen, Z. Chen, M. Q. Cai, B. H. Qu, et al., “ZnO-carbon nanofibers for stable, high response, and selective H2S sensors,” Nanotechnology, 2018, 29(27): 275501.

    [8] M. He, L. L. Xie, X. L. Zhao, X. B. Hu, S. H. Li, and A. G. Zhu, “Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/room temperature,” Journal of Alloys and Compounds, 2019, 788: 36–43.

    [9] A. Maimaiti, R. Abdurahman, N. Kari, Q. R. Ma, K. Wumaier, P. Nizamidin, et al., “Highly sensitive optical waveguide sensor for SO2 and H2S detection in the parts-per-trillion regime using tetraaminophenyl porphyrin,” Journal of Modern Optics, 2020, 67(6): 1–8.

    [10] G. Tuerdi, N. Kari, Y. Yan, P. Nizamidin, and A. Yimit, “A functionalized tetrakis(4-Nitrophenyl)porphyrin film optical waveguide sensor for detection of H2S and ethanediamine gases,” Sensors, 2017, 17(12): 2717.

    [11] Y. W. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Optics Communications, 2014, 313: 186–194.

    [12] N. L. Kazanskiy, S. N. Khonina, and A. Butt, “Polarization-insensitive hybrid plasmonic waveguide design for evanescent field absorption gas sensor,” Photonic Sensors, 2020, DOI: 10.1007/s13320-020-0601-6.

    [13] S. N. Khonina, N. L. Kazanskiy, and A. Butt, “Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application,” IEEE Sensors Journal, 2020, 20(15): 8469–8476.

    [14] C. Ranacher, C. Consan, N. Vollert, A. Tortschanoff, M. Bergmeister, T. Grille, et al., “Characterization of evanescent field gas sensor structures based on silicon photonics,” IEEE Photonics Journal, 2018, 10(5): 1–14.

    [15] A. Y. Mironenko, A. A. Sergeev, A. E. Nazirov, E. B. Modin, S. S. Voznesenskiy, and S. Y. Bratskaya, “H2S optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites,” Sensors and Actuators B: Chemical, 2016, 225: 348–353.

    [16] Y. Yan, P. Nizamidin, G. Turdi, N. Kari, and A. Yimit, “Room-temperature H2S gas sensor based on au-doped ZnFe2O4 yolk-shell microspheres,” Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry, 2017, 33(8): 945–951.

    [17] A. Abdukayum, A. Yimit, M. Mahmut, and K. Itoh, “A planar optical waveguide sensor for hydrogen sulfide detection,” Sensor Letters, 2007, 5(2): 395–397.

    [18] Q. R. Ma, B. Kutluk, N. Kari, S. Abliz, and A. Yimit, “Study on surface sensitization of g-C3N4 by functioned different aggregation behavior porphyrin and its optical properties,” Materials Science in Semiconductor Processing, 2021, 121: 105316.

    [19] R. Olgac, T. Soganci, Y. Baygu, Y. A. Gok, and M. Ak, “Zinc(II) phthalocyanine fused in peripheral positions octa-substituted with alkyl linked carbazole: Synthesis, electropolymerization and its electro-optic and biosensor applications,” Biosensors and Bioelectronics, 2017, 98: 202–209.

    [20] P. Khoza, I. Ndhundhuma, A. Karsten, and T. Nyokong, “Photodynamic therapy activity of phthalocyanine-silver nanoparticles on melanoma cancer cell,” Journal of Nanoscience and Nanotechnology, 2020, 20(5): 3097–3104.

    [21] P. Sen, M. Managa, and T. Nyokong, “New type of metal-free and Zinc(II), In(III), Ga(III) phthalocyanines carrying biologically active substituents: synthesis and photophysicochemical properties and photodynamic therapy activity,” Inorganica Chimica Acta, 2019, 491: 1–8.

    [22] F. Chen, K. Li, and G. Hu, “Catalytic oxygen reduction property of carbon nanotubes supported tetra-nitro-metal phthalocyanines-MnO2 dual catalysts,” Chinese Journal of Applied Chemistry, 2019, 36(1): 97–106.

    [23] Z. O. Makinda, M. S. Louzada, J. Britton, T. Nyokong, and S. Khene, “Spectroscopic and nonlinear optical properties of alkyl thio substituted binuclear phthalocyanines,” Dyes and Pigments, 2019, 162: 249–256.

    [24] J. W. Shi, L. Q. Luan, W. J. Fang, T. Y. Zhao, W. Liu, and D. L. Cui, “High-sensitive low-temperature NO2 sensor based on Zn (II) phthalocyanine with liquid crystalline properties,” Sensors and Actuators B: Chemical, 2014, 204: 218–223.

    [25] X. H. Liang, Z. M. Chen, H. Wu, L. X. Guo, C. Y. He, B. Wang, et al., “Enhanced NH3-sensing behavior of 2,9,16,23-tetrakis (2,2,3,3-tetrafluoropropoxy) metal(II) phthalocyanine/multi-walled carbon nanotube hybrids: An investigation of the effects of central metals,” Carbon, 2014, 80: 268–278.

    [26] T. Miyata, S. Kawaguchi, M. Ishii, and T. Minami, “High sensitivity chlorine gas sensors using Cu-phthalocyanine thin films,” Thin Solid Films, 2003, 425(1–2): 255–259.

    [27] S. Senthilarasu, S. Velumani, R. Sathyamoothr, A. Subbarayan, J. A. Ascencio, G. Ganizal, et al., “Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications,” Applied Physics A, 2003, 77(3–4): 383–389.

    [28] T. P. Mthethwa, S. Tuncel, M. Durmus, and T. Nyokong, “Photophysical and photochemical properties of a novel thiol terminated low symmetry zinc phthalocyanine complex and its gold nanoparticles conjugate,” Dalton Transactions, 2013, 42(14): 4922–4930.

    [29] Z. Q. Song, Q. X. Tang, Y. H. Ton, and Y. C. Liu, “High-response identifiable gas sensor based on a gas-dielectric ZnPc nanobelt FET,” IEEE Electron Device Letters, 2017, 38(11): 1586–1589.

    [30] T. P. Lei, Y. B. Shi, W. L. Lu, L. Yang, T. Wei, P. L. Yuan, et al., “Chlorine gas sensors using hybrid organic semiconductors of PANI/ZnPcCl16,” Journal of Semiconductors, 2010, 31(8): 084010.

    [31] P. Nizamidin, A. Yimit, I. Nurulla, and K. Itoh, “Optical waveguide BTX gas sensor based on yttrium-doped lithium iron phosphate thin film,” International Scholarly Research Notices, 2014, 2012(12): 1–6.

    [32] A. Ogunsipe and T. Nyokong, “Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives,” Journal of Molecular Structure, 2004, 689(1–2): 89–97.

    [33] B. Ghanbari, L. Shahhoseini, N. Mahlooji, P. Gholamnezhad, and R. Z. Taheri, “Through-space electronic communication of zinc phthalocyanine with substituted [60]fullerene bearing O2Nxazacrown macrocyclic ligands,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 171: 330–339.

    [34] X. J. Liu, C. Qi, T. Bing, X. H. Cheng, and D. H. Shangguan, “Highly selective phthalocyaninethymine conjugate sensor for Hg2+ based on target induced aggregation,” Analytical Chemistry, 2009, 81(9): 3699–3704.

    [35] J. X. Yi, Z. H. Chen, J. H. Xiang, and F. S. Zhang, “Photocontrollable J-aggregation of a diarylethenephthalocyanine hybrid and its aggregation- stabilized photochromic behavior,” Langmuir, 2011, 27(13): 8061–8066.

    [36] J. M. Wang, P. Nizamidin, Y. Zhang, N. Kari, and A. Yimit, “Detection of trimethylamine based on a manganese tetraphenylporphyrin optical waveguide sensing element,” Analytical Sciences, 2018, 34(5): 559–565.

    [37] A. Ogunsipe and T. Nyokong, “Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives,” Journal of Molecular Structure, 2004, 689(1–2): 89–97.

    Kediliya WUMAIER, Gulgina MAMTMIN, Qingrong MA, Asiya MAIMAITI, Patima NIZAMIDIN, Abliz YIMIT. Zinc Phthalocyanine Thin Film-Based Optical Waveguide H2S Gas Sensor[J]. Photonic Sensors, 2022, 12(1): 74
    Download Citation