• Photonics Research
  • Vol. 11, Issue 6, 1015 (2023)
J. P. Trevino1,2, V. Coello3,*, A. Jaimes-Nájera1, C. E. Garcia-Ortiz1..., S. Chávez-Cerda4 and J. E. Gómez-Correa4|Show fewer author(s)
Author Affiliations
  • 1Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey NL 64849, Mexico
  • 2Universidad Politécnica de Puebla, Cuanalá Puebla 72640, Mexico
  • 3Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Monterrey, Apodaca NL 66629, Mexico
  • 4Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Óptica, Tonantzintla Puebla 72840, Mexico
  • show less
    DOI: 10.1364/PRJ.482323 Cite this Article Set citation alerts
    J. P. Trevino, V. Coello, A. Jaimes-Nájera, C. E. Garcia-Ortiz, S. Chávez-Cerda, J. E. Gómez-Correa, "Direct observation of longitudinal aberrated wavefields," Photonics Res. 11, 1015 (2023) Copy Citation Text show less
    References

    [1] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).

    [2] V. N. Mahajan. Optical Imaging and Aberrations: Part I. Ray Geometrical Optics(1998).

    [3] M. Kovalev, I. Gritsenko, N. Stsepuro, P. Nosov, G. Krasin, S. Kudryashov. Reconstructing the spatial parameters of a laser beam using the transport-of-intensity equation. Sensors, 22, 1765(2022).

    [4] A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny. Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett., 90, 013903(2003).

    [5] G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, C. Dotzler, A. Winkler, G. Leuchs, G. H. Döhler, D. Driscoll, M. Hanson, A. C. Gossard, S. F. Pereira. Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam. J. Appl. Phys., 100, 023112(2006).

    [6] L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown. Longitudinal field modes probed by single molecules. Phys. Rev. Lett., 86, 5251-5254(2001).

    [7] B. Hao, J. Leger. Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam. Opt. Express, 15, 3550-3556(2007).

    [8] Y. Kozawa, S. Sato. Observation of the longitudinal field of a focused laser beam by second-harmonic generation. J. Opt. Soc. Am. B, 25, 175-179(2008).

    [9] D. Maluenda, M. Aviñoá, K. Ahmadi, R. Martínez-Herrero, A. Carnicer. Experimental estimation of the longitudinal component of a highly focused electromagnetic field. Sci. Rep., 11, 17992(2021).

    [10] K. A. Forbes, D. Green, G. A. Jones. Relevance of longitudinal fields of paraxial optical vortices. J. Opt., 23, 075401(2021).

    [11] C. E. Garcia-Ortiz, E. Pisano, V. Coello. Description and characterization of plasmonic Gaussian beams. J. Opt., 19, 085001(2017).

    [12] C.-F. Kuo, S.-C. Chu. Launching of surface plasmon polaritons with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams. Opt. Express, 25, 10456-10463(2017).

    [13] P. Qiu, D. Zhang, M. Jing, T. Lu, B. Yu, Q. Zhan, S. Zhuang. Dynamic tailoring of surface plasmon polaritons through incident angle modulation. Opt. Express, 26, 9772-9783(2018).

    [14] E. Pisano, C. E. Garcia-Ortiz, F. Armenta-Monzon, M. Garcia-Mendez, V. Coello. Efficient and directional excitation of surface plasmon polaritons by oblique incidence on metallic ridges. Plasmonics, 13, 1935-1940(2018).

    [15] D. Weisman, S. Fu, M. Gonçalves, L. Shemer, J. Zhou, W. P. Schleich, A. Arie. Diffractive focusing of waves in time and in space. Phys. Rev. Lett., 118, 154301(2017).

    [16] D. Weisman, C. M. Carmesin, G. G. Rozenman, M. A. Efremov, L. Shemer, W. P. Schleich, A. Arie. Diffractive guiding of waves by a periodic array of slits. Phys. Rev. Lett., 127, 014303(2021).

    [17] A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, J. Krenn. Leakage radiation microscopy of surface plasmon polaritons. Mater. Sci. Eng. B, 149, 220-229(2008).

    [18] B. Vohnsen, D. Valente. Surface-plasmon-based wavefront sensing. Optica, 2, 1024-1027(2015).

    [19] J. W. Goodman. Introduction to Fourier Optics(2005).

    [20] V. N. Mahajan. Zernike polynomials and optical aberrations. Appl. Opt., 6, 8060-8062(1995).

    [21] J. P. Treviño, J. E. Gómez-Correa, D. R. Iskander, S. Chávez-Cerda. Zernike vs. Bessel circular functions in visual optics. Ophthal. Physiol. Opt., 33, 394-402(2013).

    [22] V. N. Mahajan. Strehl ratio for primary aberrations: some analytical results for circular and annular pupils. J. Opt. Soc. Am., 72, 1258-1266(1982).

    [23] C. Garcia, V. Coello, Z. Han, I. P. Radko, S. I. Bozhevolnyi. Partial loss compensation in dielectric-loaded plasmonic waveguides at near infrared wavelengths. Opt. Express, 20, 7771-7776(2012).

    [24] I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, A. Boltasseva. Efficiency of local surface plasmon polariton excitation on ridges. Phys. Rev. B, 78, 115115(2008).

    [25] M. D. Feit, J. A. Fleck. Light propagation in graded-index optical fibers. Appl. Opt., 17, 3990-3998(1978).

    J. P. Trevino, V. Coello, A. Jaimes-Nájera, C. E. Garcia-Ortiz, S. Chávez-Cerda, J. E. Gómez-Correa, "Direct observation of longitudinal aberrated wavefields," Photonics Res. 11, 1015 (2023)
    Download Citation