• Journal of Semiconductors
  • Vol. 43, Issue 8, 082001 (2022)
Shengmin Hu1、2, Jialiang Ye1、2, Ruiqi Liu1、2, and Xinhui Zhang1、2、*
Author Affiliations
  • 1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/43/8/082001 Cite this Article
    Shengmin Hu, Jialiang Ye, Ruiqi Liu, Xinhui Zhang. Valley dynamics of different excitonic states in monolayer WSe2 grown by molecular beam epitaxy[J]. Journal of Semiconductors, 2022, 43(8): 082001 Copy Citation Text show less
    References

    [1] D Xiao, G B Liu, W X Feng et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 108, 196802(2012).

    [2] G Sallen, L Bouet, X Marie et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys Rev B, 86, 081301(2012).

    [3] T Cao, G Wang, W Han et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun, 3, 887(2012).

    [4] K F Mak, K He, J Shan et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol, 7, 494(2012).

    [5] A M Jones, H Yu, N J Ghimire et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotechnol, 8, 634(2013).

    [6] X Xu, W Yao, D Xiao et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Physics, 10, 343(2014).

    [7] H Y Shi, R S Yan, S Bertolazzi et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano, 7, 1072(2013).

    [8] C Mai, A Barrette, Y F Yu et al. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett, 14, 202(2014).

    [9] Q S Wang, S F Ge, X Li et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy. ACS Nano, 7, 11087(2013).

    [10] Q N Cui, F Ceballos, N Kumar et al. Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano, 8, 2970(2014).

    [11] G Wang, L Bouet, D Lagarde et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys Rev B, 90, 075413(2014).

    [12] D Lagarde, L Bouet, X Marie et al. Carrier and polarization dynamics in monolayer MoS2. Phys Rev Lett, 112, 047401(2014).

    [13] C R Zhu, K Zhang, M Glazov et al. Exciton valley dynamics probed by Kerr rotation in WSe2monolayers. Phys Rev B, 90, 161302(2014).

    [14] S dal Conte, F Bottegoni, E A A Pogna et al. Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical techniques. Phys Rev B, 92, 235425(2015).

    [15] L Y Yang, N A Sinitsyn, W B Chen et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat Phys, 11, 830(2015).

    [16] W T Hsu, Y L Chen, C H Chen et al. Optically initialized robust valley-polarized holes in monolayer WSe2. Nat Commun, 6, 8963(2015).

    [17] G Plechinger, P Nagler, A Arora et al. Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide. Nat Commun, 7, 12715(2016).

    [18] X L Song, S E Xie, K Kang et al. Long-lived hole spin/valley polarization probed by kerr rotation in monolayer WSe2. Nano Lett, 16, 5010(2016).

    [19] P Dey, L Y Yang, C Robert et al. Gate-controlled spin-valley locking of resident carriers in WSe2 monolayers. Phys Rev Lett, 119, 137401(2017).

    [20] A Singh, K Tran, M Kolarczik et al. Long-lived valley polarization of intravalley trions in monolayer WSe2. Phys Rev Lett, 117, 257402(2016).

    [21] F Volmer, S Pissinger, M Ersfeld et al. Intervalley dark trion states with spin lifetimes of 150 ns in WSe2. Phys Rev B, 95, 235408(2017).

    [22] E J McCormick, M J Newburger, Y K Luo et al. Imaging spin dynamics in monolayer WS2 by time-resolved Kerr rotation microscopy. 2D Mater, 5, 011010(2017).

    [23] K L He, N Kumar, L Zhao et al. Tightly bound excitons in monolayer WSe2. Phys Rev Lett, 113, 026803(2014).

    [24] S Brem, A Ekman, D Christiansen et al. Phonon-assisted photoluminescence from indirect excitons in monolayers of transition-metal dichalcogenides. Nano Lett, 20, 2849(2020).

    [25] Y You, X X Zhang, T C Berkelbach et al. Observation of biexcitons in monolayer WSe2. Nat Phys, 11, 477(2015).

    [26] D van Tuan, B Scharf, Z F Wang et al. Probing many-body interactions in monolayer transition-metal dichalcogenides. Phys Rev B, 99, 085301(2019).

    [27] M Feierabend, S Brem, A Ekman et al. Brightening of spin- and momentum-dark excitons in transition metal dichalcogenides. 2D Mater, 8, 015013(2021).

    [28] S Kusaba, K Watanabe, T Taniguchi et al. Role of dark exciton states in the relaxation dynamics of bright 1s excitons in monolayer WSe2. Appl Phys Lett, 119, 093101(2021).

    [29] X X Zhang, T Cao, Z Lu et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat Nanotechnol, 12, 883(2017).

    [30] G Wang, C Robert, M M Glazov et al. In-plane propagation of light in transition metal dichalcogenide monolayers: Optical selection rules. Phys Rev Lett, 119, 047401(2017).

    [31] J L Ye, B H Niu, Y Li et al. Exciton valley dynamics in monolayer Mo1–xWxSe2 (x  = 0, 0.5, 1). Appl Phys Lett, 111, 152106(2017).

    [32] T F Yan, J L Ye, X F Qiao et al. Exciton valley dynamics in monolayer WSe2 probed by the two-color ultrafast Kerr rotation. Phys Chem Chem Phys, 19, 3176(2017).

    [33] A Arora, M Koperski, K Nogajewski et al. Excitonic resonances in thin films of WSe2: From monolayer to bulk material. Nanoscale, 7, 10421(2015).

    [34] G Wang, A Chernikov, M M Glazov et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev Mod Phys, 90, 021001(2018).

    [35] S Adachi. Luminescence spectroscopy of Cr3+ in Al2O3 polymorphs. Opt Mater, 114, 111000(2021).

    [36] S Borghardt, J S Tu, F Winkler et al. Engineering of optical and electronic band gaps in transition metal dichalcogenide monolayers through external dielectric screening. Phys Rev Mater, 1, 054001(2017).

    [37] F Cadiz, E Courtade, C Robert et al. Excitonic linewidth approaching the homogeneous limit in MoS2 based van der Waals heterostructures. Phys Rev X, 7, 021026(2017).

    [38] Y H Cho, G H Gainer, A J Fischer et al. S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl Phys Lett, 73, 1370(1998).

    [39] T F Yan, X F Qiao, X N Liu et al. Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl Phys Lett, 105, 101901(2014).

    [40] E Courtade, M Semina, M Manca et al. Charged excitons in monolayer WSe2: Experiment and theory. Phys Rev B, 96, 085302(2017).

    [41] J Förste, N V Tepliakov, S Y Kruchinin et al. Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory. Nat Commun, 11, 4539(2020).

    [42] C Robert, D Lagarde, F Cadiz et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys Rev B, 93, 205423(2016).

    [43] F Ceballos, Q N Cui, M Z Bellus et al. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale, 8, 11681(2016).

    [44] M Yang, C Robert, Z G Lu et al. Exciton valley depolarization in monolayer transition-metal dichalcogenides. Phys Rev B, 101, 115307(2020).

    [45] D Schmidt, T Godde, J Schmutzler et al. Exciton and trion dynamics in atomically thin MoSe2 and WSe2: Effect of localization. Phys Rev B, 94, 165301(2016).

    [46] T Yu, M W Wu. Valley depolarization due to inter- and intra-valley electron-hole exchange interactions in monolayer MoS2. Phys Rev B, 89, 205303(2014).

    [47] G Plechinger, T Korn, J M Lupton. Valley-polarized exciton dynamics in exfoliated monolayer WSe2. J Phys Chem C, 121, 6409(2017).

    [48] H Yu, G B Liu, P Gong et al. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat Commun, 5, 3876(2014).

    [49] A Singh, G Moody, S F Wu et al. Coherent electronic coupling in atomically thin MoSe2. Phys Rev Lett, 112, 216804(2014).

    [50] R Schmidt, G Berghäuser, R Schneider et al. Ultrafast coulomb-induced intervalley coupling in atomically thin WS2. Nano Lett, 16, 2945(2016).

    [51] E A A Pogna, M Marsili, D de Fazio et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano, 10, 1182(2016).

    [52] K Shinokita, X F Wang, Y Miyauchi et al. Ultrafast dynamics of bright and dark positive trions for valley polarization in monolayer WSe2. Phys Rev B, 99, 245307(2019).

    [53] J Feldmann, G Peter, E O Göbel et al. Linewidth dependence of radiative exciton lifetimes in quantum wells. Phys Rev Lett, 60, 243(1988).

    [54] D Sanvitto, R A Hogg, A J Shields et al. Rapid radiative decay of charged excitons. Phys Rev B, 62, R13294(2000).

    [55] C Robert, S Park, F Cadiz et al. Spin/valley pumping of resident electrons in WSe2 and WS2 monolayers. Nat Commun, 12, 5455(2021).

    [56] T F Yan, S Y Yang, D Li et al. Long valley relaxation time of free carriers in monolayer WSe2. Phys Rev B, 95, 241406(2017).

    [57] M He, P Rivera, D van Tuan et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat Commun, 11, 618(2020).

    [58] M Selig, G Berghäuser, A Raja et al. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat Commun, 7, 13279(2016).

    [59] Y Song, H Dery. Transport theory of monolayer transition-metal dichalcogenides through symmetry. Phys Rev Lett, 111, 026601(2013).

    [60] H Dery, Y Song. Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys Rev B, 92, 125431(2015).

    Shengmin Hu, Jialiang Ye, Ruiqi Liu, Xinhui Zhang. Valley dynamics of different excitonic states in monolayer WSe2 grown by molecular beam epitaxy[J]. Journal of Semiconductors, 2022, 43(8): 082001
    Download Citation