• Opto-Electronic Engineering
  • Vol. 45, Issue 9, 180243 (2018)
Tong Weijun1、*, Yang Chen1、2, Liu Tongqing1, Zhang Xinben1, Yang Kun1, Yang Yucheng1, and Tang Ming2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.180243 Cite this Article
    Tong Weijun, Yang Chen, Liu Tongqing, Zhang Xinben, Yang Kun, Yang Yucheng, Tang Ming. Progress and prospect of novel specialty fibers for fiber optic sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 180243 Copy Citation Text show less
    References

    [2] Liu T G, Wang S, Jiang J F, et al. Advances in optical fiber sensing technology for aviation and aerospace application[J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1681–1692.

    [3] Takeda S I, Aoki Y, Nagao Y. Damage monitoring of CFRP stiffened panels under compressive load using FBG sensors[J]. Composite Structures, 2012, 94(3): 813–819.

    [4] Dandridge A, Cogdell G B. Fiber optic sensors for navy applications[ J]. IEEE LCS, 1991, 2(1): 81–89.

    [5] Peng W, Banerji S, Kim Y C, et al. Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications[J]. Optics Letters, 2005, 30(22): 2988–2990.

    [6] Integrated Publishing, Inc. Fabrication of optical fibers[EB/OL]. http://www.tpub.com/neets/tm/107–5.htm.

    [7] Dutton H S. Understanding optical communications[EB/OL]. [2009–02–19]. http://medea.uib.es/salvador/coms-optiques, addicional/ibm/ch06/06–02.Html.

    [8] Stadnik D. Optical fiber technology[EB/OL]. http://csrgch. pw.edu.pl/tutorials/fiber.

    [9] Pfuch A, Heft A, Weidl R, et al. Characterization of SiO2 thin films prepared by plasma-activated chemical vapour deposition[ J]. Surface and Coatings Technology, 2006, 201(1–2): 189–196.

    [10] Lefèvre H C. The Fiber-Optic Gyroscope[M]. London: Artech House Inc., 1993.

    [11] Bergh R A, Lefevre H C, Shaw H J. All-single-mode fiber-optic gyroscope[J]. Optics Letters, 1981, 6(4): 198–200.

    [12] Sanders G A, Szafraniec B, Liu R Y, et al. Fiber optic gyros for space, marine, and aviation applications[J]. Proceeding of SPIE, 1996, 2837: 61–71.

    [13] Bohnert K, Gabus P, Kostovic J, et al. Optical fiber sensors for the electric power industry[J]. Optics and Lasers in Engineering, 2005, 43(3–5): 511–526.

    [14] Michie C. Polarimetric optical fiber sensors[M]//Yin S Z, Ruffin P B, Yu F T S. Fiber Optic Sensors. Boca Raton, FL: CRC Press, 2008.

    [15] Lin H, Huang S C. Fiber-optics multiplexed interferometric current sensors[J]. Sensors and Actuators A: Physical, 2005, 121(2): 333–338.

    [16] Foroni M, Ruggeri L, Poli F, et al. S+C+L band double-pass EDFA[C]// Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications. Whistler Canada Washington, DC: OSA, 2006: JWB44.

    [17] Nix M, Yam S S H. Highly efficient dual wavelength pumping scheme for thulium-doped fiber amplifier[C]//Proceedings of the 19th Annual Meeting of the IEEE Lasers and electro-optics Society. Montreal, Que., Canada: IEEE, 2006: 390–391.

    [18] Miyazaki T, Inagaki K, Karasawa Y, et al. Nd-doped double-clad fiber amplifier at 1.06 μm[J]. Journal of Lightwave Technology, 1998, 16(4): 562–566.

    [19] Li M J. Bend-insensitive optical fibers for FTTH applications[J]. Proceedings of SPIE, 2009, 7234: 72340B.

    [20] Cheng Y, Li S Y, Li J Y, et al. Theory research and manufacture of bend insensitive optical fiber[J]. Optics & Optoelectronic Technology, 2005, 3(6): 38–40.

    [21] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601–8639.

    [22] Bao X Y, Chen L. Recent progress in Brillouin scattering based fiber sensors[J]. Sensors, 2011, 11(4): 4152–4187.

    [23] Motil A, Bergman A, Tur M. [INVITED] State of the art of Brillouin fiber-optic distributed sensing[J]. Optics & Laser Technology, 2016, 78: 81–103.

    [24] Dong Y K, Chen L, Bao X Y. Time-division multiplexing-based BOTDA over 100km sensing length[J]. Optics Letters, 2011, 36(2): 277–279.

    [25] Wang F, Zhang X P, Lu Y G, et al. Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry[J]. Measurement Science and Technology, 2009, 20(2): 025202.

    [26] Dong Y K, Zhang H Y, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229–1235.

    [27] Zhao Z Y, Soto M A, Tang M, et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 2016, 24(22): 25211–25223.

    [28] Zhao Z Y, Dang Y L, Tang M, et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber[J]. Optics Letters, 2017, 42(1): 171–174.

    [29] Zhao Z Y, Dang Y L, Tang M, et al. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber[J]. Optics Express, 2016, 24(22): 25111–25118.

    [30] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 2012, 20(3): 2967–2973.

    [31] Moore J P. Shape sensing using multi-core fiber[ C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA: IEEE, 2015: Th1C.2.

    [32] NASA. Real-Time 3D Shape Rendering: CA 93523–0273[R]. USA: National Aeronautics and Space Administration, 2013.

    [33] Rogge M D, Moore J P. Shape sensing using a multi-core optical fiber having an arbitrary initial shape in the presence of extrinsic forces: US-Patent-8,746,076[P]. 2014–06-10.

    [34] Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter[J]. Measurement Science and Technology, 2001, 12(7): 834–842.

    [35] Soto M A, Bolognini G, Di Pasquale F. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding[J]. IEEE Photonics Technology Letters, 2009, 21(7): 450–452.

    [36] Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering[J]. Optics Letters, 2005, 30(11): 1276–1278.

    [37] Bolognini G, Soto M A, Pasquale F D. Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry–Pérot lasers[J]. IEEE Photonics Technology Letters, 2009, 21(20): 1523–1525.

    [38] Bolognini G, Soto M A. Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers[J]. Optics Express, 2010, 18(8): 8459–8465.

    [39] Taki M, Signorini A, Oton C J, et al. Hybrid Raman/ Brillouin-optical-time-domain- analysis-distributed optical fiber sensors based on cyclic pulse coding[J]. Optics Letters, 2013, 38(20): 4162–4165.

    [40] Sasaki Y, Takenaga K, Matsuo S, et al. Few-mode multicore fibers for long-haul transmission line[J]. Optical Fiber Technology, 2017, 35: 19–27.

    [41] Mizuno T, Takara H, Sano A, et al. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber[J]. Journal of Lightwave Technology, 2016, 34(2): 582–592.

    [42] Mizuno T, Takara H, Shibahara K, et al. Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems[J]. Journal of Lightwave Technology, 2016, 34(6): 1484–1493.

    [43] Kumar A, Goel N K, Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference[ J]. Journal of Lightwave Technology, 2001, 19(3): 358–362.

    [44] Chen J, Lu P, Liu D M, et al. Optical fiber curvature sensor based on few mode fiber[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(17): 4776–4778.

    [45] Su J, Dong X P, Lu C X. Intensity detection scheme of sensors based on the modal interference effect of few mode fiber[J]. Measurement, 2016, 79: 182–187.

    [46] Salik E, Medrano M, Cohoon G, et al. SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior[J]. IEEE Photonics Technology Letters, 2012, 24(7): 593–595.

    [47] Su J, Dong X P, Lu C X. Property of bent few-mode fiber and its application in displacement sensor[J]. IEEE Photonics Technology Letters, 2016, 28(13): 1387–1390.

    [48] Luo C, Lu P, Fu X, et al. All-fiber sensor based on few-mode fiber offset splicing structure cascaded with long-period fiber grating for curvature and acoustic measurement[J]. Photonic Network Communications, 2016, 32(2): 224–229.

    [49] Zhang J. Few-mode fiber based sensor in biomedical application[ J]. Proceedings of SPIE, 2015, 9480: 94800O.

    [50] Song K Y, Kim Y H. Characterization of stimulated Brillouin scattering in a few-mode fiber[J]. Optics Letters, 2013, 38(22): 4841–4844.

    [51] Li A, Hu Q, Shieh W. Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis[J]. Optics Express, 2013, 21(26): 31894–31906.

    [52] Wu H, Wang R X, Liu D M, et al. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift[J]. Optics Letters, 2016, 41(7): 1514–1517.

    CLP Journals

    [1] Hao Zhaorong, Wang Qiang, Da Jianpu, Luo Sunan, Wang Yao, Zhang Guangtai, Li Zhao. Research and application of all-fiber optic current transformer based on optical reciprocity loop[J]. Opto-Electronic Engineering, 2020, 47(4): 180671

    Tong Weijun, Yang Chen, Liu Tongqing, Zhang Xinben, Yang Kun, Yang Yucheng, Tang Ming. Progress and prospect of novel specialty fibers for fiber optic sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 180243
    Download Citation