• High Power Laser Science and Engineering
  • Vol. 8, Issue 1, 010000e7 (2020)
Stylianos Passalidis1, Oliver C. Ettlinger2, George S. Hicks2, Nicholas P. Dover3, Zulfikar Najmudin2, Emmanouil P. Benis4, Evaggelos Kaselouris5, Nektarios A. Papadogiannis5, Michael Tatarakis6, and Vasilis Dimitriou5、*
Author Affiliations
  • 1Institute of Plasma Physics & Lasers, Hellenic Mediterranean University, Chania 73133, Rethymno 74100, Greece
  • 2The John Adams Institute, The Blackett Laboratory, Imperial College, London SW7 2AZ, UK
  • 3The John Adams Institute, The Blackett Laboratory, Imperial College, London SW7 2AZ, UK
  • 4Department of Physics, University of Ioannina, GR Ioannina 45110, Greece
  • 5Institute of Plasma Physics & Lasers, Hellenic Mediterranean University, Chania 73133, Rethymno 74100, Greece
  • 6Institute of Plasma Physics & Lasers, Hellenic Mediterranean University, Chania 73133, Rethymno 74100, Greece
  • show less
    DOI: 10.1017/hpl.2020.5 Cite this Article Set citation alerts
    Stylianos Passalidis, Oliver C. Ettlinger, George S. Hicks, Nicholas P. Dover, Zulfikar Najmudin, Emmanouil P. Benis, Evaggelos Kaselouris, Nektarios A. Papadogiannis, Michael Tatarakis, Vasilis Dimitriou. Hydrodynamic computational modelling and simulations of collisional shock waves in gas jet targets[J]. High Power Laser Science and Engineering, 2020, 8(1): 010000e7 Copy Citation Text show less

    Abstract

    We study the optimization of collisionless shock acceleration of ions based on hydrodynamic modelling and simulations of collisional shock waves in gaseous targets. The models correspond to the specifications required for experiments with the $\text{CO}_{2}$ laser at the Accelerator Test Facility at Brookhaven National Laboratory and the Vulcan Petawatt system at Rutherford Appleton Laboratory. In both cases, a laser prepulse is simulated to interact with hydrogen gas jet targets. It is demonstrated that by controlling the pulse energy, the deposition position and the backing pressure, a blast wave suitable for generating nearly monoenergetic ion beams can be formed. Depending on the energy absorbed and the deposition position, an optimal temporal window can be determined for the acceleration considering both the necessary overdense state of plasma and the required short scale lengths for monoenergetic ion beam production.
    $$\begin{eqnarray}\displaystyle v_{\text{ei}} & = & \displaystyle \frac{1}{3(2\unicode[STIX]{x1D70B})^{3/2}}\frac{n_{e}Ze^{4}\ln \unicode[STIX]{x039B}}{\unicode[STIX]{x1D700}_{0}^{2}m_{e}^{1/2}(k_{b}T_{e}[\text{K}])^{3/2}}\nonumber\\ \displaystyle & {\approx} & \displaystyle \frac{2.9\times 10^{-12}n_{e}Z[\text{m}^{-3}]}{(T_{e}[\text{eV}])^{3/2}}\ln \unicode[STIX]{x039B},\end{eqnarray}$$(1)

    View in Article

    $$\begin{eqnarray}K=\frac{v_{\text{ei}}}{c}\left(\frac{n_{e}}{n_{c}}\right)\left(1-\frac{n_{e}}{n_{c}}\right)^{-1/2},\end{eqnarray}$$(2)

    View in Article

    $$\begin{eqnarray}\unicode[STIX]{x1D702}\approx 1-\exp (-KZ_{R}),\end{eqnarray}$$(3)

    View in Article

    $$\begin{eqnarray}T_{e}(t)[\text{eV}]=\frac{1}{2n_{e}Z_{R}e}\int _{0}^{t}I_{L}\{1-\exp [-K(t)Z_{R}]\}\,\text{d}t.\end{eqnarray}$$(4)

    View in Article

    $$\begin{eqnarray}r_{\text{bw}}(t)=\unicode[STIX]{x1D701}_{0}(\unicode[STIX]{x1D6FE})\left(\frac{E_{\text{abs}}}{\unicode[STIX]{x1D70C}}\right)^{1/(2+\unicode[STIX]{x1D6FC})}t^{2/(2+\unicode[STIX]{x1D6FC})},\end{eqnarray}$$(5)

    View in Article

    $$\begin{eqnarray}u_{\text{sh}}=\frac{\text{d}r(t)}{\text{d}t}=\frac{2}{2+a}\unicode[STIX]{x1D701}_{0}(\unicode[STIX]{x1D6FE})\left(\frac{E_{\text{abs}}}{\unicode[STIX]{x1D70C}}\right)^{1/(2+a)}t^{2/(2+a)-1}.\end{eqnarray}$$(6)

    View in Article

    $$\begin{eqnarray}u_{\text{sh}}=\frac{2}{2+a}[\unicode[STIX]{x1D701}_{0}(\unicode[STIX]{x1D6FE})]^{(2+a)/2}\left(\frac{E_{\text{abs}}}{\unicode[STIX]{x1D70C}}\right)^{1/2}r^{-a/2}.\end{eqnarray}$$(7)

    View in Article

    $$\begin{eqnarray}\displaystyle \begin{array}{@{}l@{}}\displaystyle \frac{\unicode[STIX]{x2202}\unicode[STIX]{x1D70C}}{\unicode[STIX]{x2202}t}+\overset{\rightharpoonup }{\unicode[STIX]{x1D6FB}}\cdot \left(\unicode[STIX]{x1D70C}\overset{\rightharpoonup }{v}\right)=0,\\[5.0pt] \displaystyle \frac{\unicode[STIX]{x2202}\unicode[STIX]{x1D70C}\overset{\rightharpoonup }{v}}{\unicode[STIX]{x2202}t}+\overset{\rightharpoonup }{\unicode[STIX]{x1D6FB}}\cdot \left(\unicode[STIX]{x1D70C}\overset{\rightharpoonup }{v}\overset{\rightharpoonup }{v}\right)+\overset{\rightharpoonup }{\unicode[STIX]{x1D6FB}}P=\unicode[STIX]{x1D70C}\overset{\rightharpoonup }{g},\\[5.0pt] \displaystyle \frac{\unicode[STIX]{x2202}\unicode[STIX]{x1D70C}E}{\unicode[STIX]{x2202}t}+\overset{\rightharpoonup }{\unicode[STIX]{x1D6FB}}\cdot [(\unicode[STIX]{x1D70C}E+P)\overset{\rightharpoonup }{v}]+\overset{\rightharpoonup }{\unicode[STIX]{x1D6FB}}P=\unicode[STIX]{x1D70C}\overset{\rightharpoonup }{v}\cdot \overset{\rightharpoonup }{g},\end{array} & & \displaystyle\end{eqnarray}$$(8)

    View in Article

    $$\begin{eqnarray}P=(\unicode[STIX]{x1D6FE}-1)\unicode[STIX]{x1D70C}\unicode[STIX]{x1D700}.\end{eqnarray}$$(9)

    View in Article

    $$\begin{eqnarray}n_{a}k_{B}T_{c}=n_{b}k_{B}T_{b},\end{eqnarray}$$(10)

    View in Article

    Stylianos Passalidis, Oliver C. Ettlinger, George S. Hicks, Nicholas P. Dover, Zulfikar Najmudin, Emmanouil P. Benis, Evaggelos Kaselouris, Nektarios A. Papadogiannis, Michael Tatarakis, Vasilis Dimitriou. Hydrodynamic computational modelling and simulations of collisional shock waves in gas jet targets[J]. High Power Laser Science and Engineering, 2020, 8(1): 010000e7
    Download Citation