• Chinese Journal of Lasers
  • Vol. 47, Issue 12, 1204009 (2020)
Chu Yufei1、2, Liu Dong1、2, Wu Decheng1、2, and Wang Yingjian1、2、*
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 2University of Science and Technology of China, Hefei, Anhui 230036, China
  • show less
    DOI: 10.3788/CJL202047.1204009 Cite this Article Set citation alerts
    Chu Yufei, Liu Dong, Wu Decheng, Wang Yingjian. Algorithm of Retrieving Boundary Layer Height Based on Raman Lidar Water Vapor Data[J]. Chinese Journal of Lasers, 2020, 47(12): 1204009 Copy Citation Text show less
    References

    [1] Stull R B. Mean boundary layer characteristics[M]. //Stull R B. An introduction to boundary layer meteorology. Atmospheric sciences library. Dordrecht: Springer, 13, 1-27(1988).

    [2] Oke T R. Boundary layer climates[M]. London: Routledge(1987).

    [3] Wang Z E, Sassen K. Cloud type and macrophysical property retrieval using multiple remote sensors[J]. Journal of Applied Meteorology, 40, 1665-1682(2001). http://adsabs.harvard.edu/abs/2001japme..40.1665w

    [4] Flamant C, Pelon J, Flamant P H et al. Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer[J]. Boundary-Layer Meteorology, 83, 247-284(1997). http://www.springerlink.com/content/r4v3x1q035v1727q/

    [5] Lee X. Fundamentals of boundary-layer meteorology[M]. Cham: Springer(2018).

    [6] Wang Y F, Cao X M, Zhang J et al. Detection and analysis of all-day atmospheric water vapor Raman lidar based on wavelet denoising algorithm[J]. Acta Optica Sinica, 38, 0201001(2018).

    [7] Shi D C, Hua D X, Huang B et al. Influence of ultraviolet wavelength selection on detection performance of all-day water vapor Raman lidar[J]. Acta Optica Sinica, 38, 1228003(2018).

    [8] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 20, 211-220(1981).

    [9] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 23, 652-653(1984).

    [10] Luo T, Yuan R, Wang Z. Lidar-based remote sensing of atmospheric boundary layer height over land and ocean[J]. Atmospheric Measurement Techniques, 7, 173-182(2014).

    [11] Luo T, Wang Z E, Zhang D M et al. Marine boundary layer structure as observed by A-train satellites[J]. Atmospheric Chemistry and Physics, 16, 5891-5903(2016). http://adsabs.harvard.edu/abs/2016ACP....16.5891L

    [13] Sisterson D L, Peppler R A, Cress T S et al. The ARM southern great plains (SGP) site[J]. Meteorological Monographs, 57, 6(2016).

    [14] Newsom R K. Ramanlidar (RL) handbook[R]. Department of Energy: OSTI(2009).

    [15] Melfi S H, Spinhirne J D, Chou S H et al. Lidar observations of vertically organized convection in the planetary boundary layer over the ocean[J]. Journal of Climate and Applied Meteorology, 24, 806-821(1985).

    [16] Boers R, Spinhirne J D, Hart W D. Lidar observations of the fine-scale variability of marine stratocumulus clouds[J]. Journal of Applied Meteorology, 27, 797-810(1988).

    [17] Sicard M, Pérez C, Rocadenbosch F et al. Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations[J]. Boundary-Layer Meteorology, 119, 135-157(2006). http://link.springer.com/article/10.1007/s10546-005-9005-9

    [18] Hayden K L, Anlauf K G, Hoff R M et al. The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific '93[J]. Atmospheric Environment, 31, 2089-2105(1997).

    [19] Vogelezang D H P, Holtslag A M. Evaluation and model impacts of alternative boundary-layer height formulations[J]. Boundary-Layer Meteorology, 81, 245-269(1996).

    [20] Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 10, 112-122(1973). http://onlinelibrary.wiley.com/doi/10.1002/9780470669488.ch3/pdf

    [21] Feng C Z, Wu S H, Liu B Y. Research on wind retrieval method of coherent Doppler lidar and experimental verification[J]. Chinese Journal of Lasers, 45, 0410001(2018).

    [22] Gong W, Mao F Y, Song S L. Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar[J]. Meteorology and Atmospheric Physics, 113, 89-97(2011).

    [23] Mao F Y, Gong W, Zhu Z M. Simple multiscale algorithm for layer detection with lidar[J]. Applied Optics, 50, 6591-6598(2011). http://www.opticsinfobase.org/abstract.cfm?uri=ao-50-36-6591

    [24] Mao F Y, Li J, Li C et al. Nonlinear physical segmentation algorithm for determining the layer boundary from lidar signal[J]. Optics Express, 23, A1589-A1602(2015).

    Chu Yufei, Liu Dong, Wu Decheng, Wang Yingjian. Algorithm of Retrieving Boundary Layer Height Based on Raman Lidar Water Vapor Data[J]. Chinese Journal of Lasers, 2020, 47(12): 1204009
    Download Citation