• Opto-Electronic Engineering
  • Vol. 47, Issue 5, 190590 (2020)
Ma Xiaoming1, Jiang Zaichao1, Qu Qingshan1, Cui Bin1, Zhang Zhenwei2、3、4、5, and Yang Yuping1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190590 Cite this Article
    Ma Xiaoming, Jiang Zaichao, Qu Qingshan, Cui Bin, Zhang Zhenwei, Yang Yuping. Research advances of high-resolution THz imaging based on terajet effect[J]. Opto-Electronic Engineering, 2020, 47(5): 190590 Copy Citation Text show less
    References

    [1] Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Optics Express, 2018, 26(8): 9417–9431.

    [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97–105.

    [3] Adam A J L. Review of Near-Field Terahertz measurement methods and their applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(8–9): 976–1019.

    [4] Siday T, Natrella M, Wu J, et al. Resonant terahertz probes for near-field scattering microscopy[J]. Optics Express, 2017, 25(22): 27874–27885.

    [5] Zinov’ev N N, Andrianov A V, Gallant A J, et al. Contrast and resolution enhancement in a confocal terahertz video system[J]. JETP Letters, 2008, 88(8): 492–495.

    [6] Llombart N, Cooper K B, Dengler R J, et al. Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(6): 1834–1841.

    [7] Balbekin N S, Kulya M S, Belashov A V, et al. Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography[J]. Scientific Reports, 2019, 9: 180.

    [8] Liu T, Pi Y M, Yang X. Wide-angle CSAR imaging based on the adaptive subaperture partition method in the terahertz band[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(2): 165–173.

    [9] Ding S H, Li Q, Yao R, et al. High-resolution terahertz reflective imaging and image restoration[J]. Applied Optics, 2010, 49(36): 6834–6839.

    [10] Hunsche S, Koch M, Brener I, et al. THz near-field imaging[J]. Optics Communications, 1997, 150(1–6): 22–26.

    [11] Mitrofanov O, Brener I, Wanke M C, et al. Near-field microscope probe for far infrared time domain measurements[J]. Applied Physics Letters, 2000, 77(4): 591–593.

    [12] Chen Q, Zhang X C. Semiconductor dynamic aperture for near-field terahertz wave imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 608–614.

    [13] Mitrofanov O, Brener I, Harel R, et al. Terahertz near-field microscopy based on a collection mode detector[J]. Applied Physics Letters, 2000, 77(22): 3496–3498.

    [14] Chen H T, Kersting R, Cho G C. Terahertz imaging with nanometer resolution[J]. Applied Physics Letters, 2003, 83(15): 3009–3011.

    [15] van der Valk N C J, Planken P C M. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip[J]. Applied Physics Letters, 2002, 81(9): 1558–1560.

    [16] Moon K, Park H, Kim J, et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy[J]. Nano Letters, 2015, 15(1): 549–552.

    [17] Klarskov P, Kim H, Colvin V L, et al. Nanoscale laser terahertz emission microscopy[J]. ACS Photonics, 2017, 4(11): 2676–2680.

    [18] Kiwa T, Tonouchi M, Yamashita M, et al. Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits[J]. Optics Letters, 2003, 28(21): 2058–2060.

    [19] Yamashita M, Kawase K, Otani C, et al. Imaging of large-scale integrated circuits using laser terahertz emission microscopy[J]. Optics Express, 2005, 13(1): 115–120.

    [20] Yang Y P, Yan W, Li W. A reflected terahertz-emission microscopy[J]. Chinese Physics Letters, 2007, 24(1): 169–171.

    [21] Yang Y P, Shi Y L, Yan W, et al. A new microscopy for THz radiation[J]. Acta Physica Sinica, 2005, 54(9): 4079–4083.

    [22] Zhao J Y, Chu W, Guo L J, et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air[J]. Scientific Reports, 2015, 4: 3880.

    [23] Ishihara K, Ohashi K, Ikari T, et al. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture[J]. Applied Physics Letters, 2006, 89(20): 201120.

    [24] Chen H, Ma S H, Wu X M, et al. Diagnose human colonic tissues by terahertz near-field imaging[J]. Journal of Biomedical Optics, 2015, 20(3): 036017.

    [25] Xu Y H, Zhang X Q, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Applied Physics Letters, 2015, 107(2): 021105.

    [26] Chen S C, Du L H, Meng K, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 2019, 44(1): 21–24.

    [27] Wang Z B, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218.

    [28] Pacheco-Pe?a V, Beruete M, Minin I V, et al. Terajets produced by dielectric cuboids[J]. Applied Physics Letters, 2014, 105(8): 084102.

    [29] Yang Y P, Liu H L, Yang M H, et al. Dielectric sphere-coupled THz super-resolution imaging[J]. Applied Physics Letters, 2018, 113(3): 031105.

    [30] Hao X, Kuang C F, Liu X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 2011, 99(20): 203102.

    [31] Darafsheh A, Walsh G F, Negro L D, et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 2012, 101(14): 141128.

    [32] Lee S, Li L, Ben-Aryeh Y, et al. Overcoming the diffraction limit induced by microsphere optical nanoscopy[J]. Journal of Optics, 2013, 15(12): 125710.

    [33] Li L, Guo W, Yan Y Z, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2013, 2(9): e104.

    [34] Yang H, Moullan N, Auwerx J, et al. Fluorescence imaging: super-resolution biological microscopy using virtual imaging by a microsphere nanoscope [J]. Small, 2014, 10(9): 1876.

    [35] Wang F, Yang S, Ma H, et al. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion [J]. Applied Physics Letters, 2018, 112:023101.

    [36] Yan Y Z, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809–1816.

    [37] Li P Y, Tsao Y, Liu Y J, et al. Unusual imaging properties of superresolution microspheres[J]. Optics Express, 2016, 24(15): 16479–16486.

    [38] Yang H, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862–4870.

    [39] Chen Z G, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7): 1214–1220.

    [40] Shen Y C, Wang L V, Shen J T. Ultralong photonic nanojet formed by a two-layer dielectric microsphere[J]. Optics Letters, 2014, 39(14): 4120–4123.

    [41] Ben-Aryeh Y. Nano-jet related to Bessel beams and to super-resolutions in microsphere optical experiments[J]. EPJ Techniques and Instrumentation, 2017, 4: 3.

    [42] Pacheco-Pe?a V, Beruete M, Minin I V, et al. Multifrequency focusing and wide angular scanning of terajets[J]. Optics Letters, 2015, 40(2): 245–248.

    [43] Pham H H N, Hisatake S, Minin I V, et al. Three-dimensional direct observation of Gouy phase shift in a terajet produced by a dielectric cuboid[J]. Applied Physics Letters, 2016, 108(19): 191102.

    [44] Pham H H N, Hisatake S, Minin O V, et al. Asymmetric phase anomaly of terajet generated from dielectric cube under oblique illumination[J]. Applied Physics Letters, 2017, 110(20): 201105.

    [45] Pham H H N, Hisatake S, Minin O V, et al. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube[J]. APL Photonics, 2017, 2(5): 056106.

    [46] Minin I V, Minin O V, Pacheco-Pe?a V, et al. All-dielectric periodic terajet waveguide using an array of coupled cuboids[J]. Applied Physics Letters, 2015, 106(25): 254102.

    [47] Minin I V, Minin O V, Pacheco-Pe?a V, et al. Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode[J]. Optics Letters, 2015, 40(10): 2329–2332.

    [48] Yue L Y, Yan B, Monks J N, et al. A millimetre-wave cuboid solid immersion lens with intensity-enhanced amplitude mask apodization[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39(6): 546–552.

    [49] Minin I V, Minin O V. Terajet from 3D anisotropic artificial metamaterial[C]//Proceedings of 2016 13th International Scientific-technical Conference on Actual Problems of Electronics Instrument Engineering, 2016: 142–144.

    [50] Minin I V, Minin O V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images[J]. Optical and Quantum Electronics, 2017, 49(10): 326.

    [51] Cruz A L S, Cordeiro C M B, Franco M A R. Enhanced Terahertz transmission through 3D non-spherical terajets[J]. Proceedings of SPIE, 2015, 9634: 963412.

    [52] Niu L T, Wang K J, Yang Y Q, et al. Diffractive elements for zero-order Bessel beam generation with application in the terahertz reflection imaging[J]. IEEE Photonics Journal, 2019, 11(1): 5900212.

    [53] Zhang Z W, Zhang H Y, Wang K J. Diffraction-free THz sheet and its application on THz imaging system[J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(5): 471–475.

    [54] Yang Z C, Qu Q S, Yang M H, et al. Propagation characteristics of high-throughput terajet beam and its super Resolution THz imaging[C]//Proceedings of 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2019: 1–2.

    [55] Qu Q S, Liu H L, Zhu D, et al. Terajet effect of dielectric sphere and THz imaging[J]. Proceedings of SPIE, 2018, 10826: 1082606.

    [56] Chernomyrdin N V, Frolov M E, Lebedev S P, et al. Wide-aperture aspherical lens for high-resolution terahertz imaging[J]. Review of Scientific Instruments, 2017, 88(1): 014703.

    Ma Xiaoming, Jiang Zaichao, Qu Qingshan, Cui Bin, Zhang Zhenwei, Yang Yuping. Research advances of high-resolution THz imaging based on terajet effect[J]. Opto-Electronic Engineering, 2020, 47(5): 190590
    Download Citation