• Laser & Optoelectronics Progress
  • Vol. 55, Issue 2, 011404 (2018)
Shifeng Wen1, Xiantai Ji1, Yan Zhou1、2、*, and Qingsong Wei1
Author Affiliations
  • 1State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China;
  • 2School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, China;
  • show less
    DOI: 10.3788/LOP55.011404 Cite this Article Set citation alerts
    Shifeng Wen, Xiantai Ji, Yan Zhou, Qingsong Wei. Development Status and Prospect of Selective Laser Melting of Mould Steels[J]. Laser & Optoelectronics Progress, 2018, 55(2): 011404 Copy Citation Text show less
    References

    [2] Xu H L, Wen G H, Sun W et al. Thermal behaviour of moulds with different water channels and their influence on quality in continuous casting of beam blanks[J]. Ironmaking & Steelmaking, 37, 380-386(2010). http://www.tandfonline.com/doi/abs/10.1179/030192310X12646889255780

    [4] Jhavar S, Paul C P, Jain N K. Causes of failure and repairing options for dies and molds: a review[J]. Engineering Failure Analysis, 34, 519-535(2013). http://www.sciencedirect.com/science/article/pii/S1350630713002963

    [5] Yu Y X, He B L, Li L. Review of status and development trend of die & mould materials in China and abroad[J]. Material & Heat Treatment, 38, 45-97(2009).

    [6] Zhang X L, Cao C L, Zha X et al. Study of manufacturing of high-end fineblanking tools[J]. Journal of Plasticity Engineering, 20, 68-71(2013).

    [7] Conner BP, Manogharan GP, Martof AN, et al. Making sense of 3-D printing: creating a map of additive manufacturing products and services[J]. AdditiveManufacturing, 2014, 1/2/34: 64- 76.

    [8] Ponche R, Kerbrat O, Mognol P et al. A novel methodology of design for additive manufacturing applied to additive laser manufacturing process[J]. Robotics and Computer-Integrated Manufacturing, 30, 389-398(2014). http://dl.acm.org/citation.cfm?id=2609208

    [9] Song C H, Yang Y Q, Ye Z H et al. Development of freeform design and manufacturing based on selective laser melting[J]. Laser & Optoelectronics Progress, 50, 080026(2013).

    [10] Yang Y Q, Wang D, Wu W H. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 38, 0601007(2011).

    [11] Murr L E, Gaytan S M, Ramirez D A et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J]. Journal of Materials Science & Technology, 28, 1-14(2012). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=clkj201201002&dbname=CJFD&dbcode=CJFQ

    [12] Li W, Liu J, Wen S. et al. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Materials Characterization, 113, 125-133(2016). http://www.sciencedirect.com/science/article/pii/S1044580316300134

    [13] Cormier D, Harrysson O, West H. Characterization of H13 steel produced via electron beam melting[J]. Rapid Prototyping Journal, 10, 35-41(2004). http://www.emeraldinsight.com/doi/full/10.1108/13552540410512516

    [14] Rännar L, Gustafson C, Glad A. Efficient cooling with tool inserts manufactured by electron beam melting[J]. Rapid Prototyping Journal, 13, 128-135(2007). http://www.emeraldinsight.com/doi/full/10.1108/13552540710750870

    [15] Unocic R R. A fundamental investigation of process efficiencies in the laser engineered net shaping (LENS) solid freeform fabrication process[D]. Bethlehem: Lehigh University(2002).

    [16] Manvatkar V D, Gokhale A A, Reddy G J et al. Investigation on laser engineered net shaping of multilayered structures in H13 tool steel[J]. Journal of Laser Applications, 27, 032010(2015). http://scitation.aip.org/content/lia/journal/jla/27/3/10.2351/1.4921493

    [17] Yang Q Z, Wei Y P, Gao P et al. Research progress of metal additive manufacturing technologies and related materials[J]. Materials Review, 30, 107-124(2016).

    [18] Smith C J, Derguti F, Nava E H et al. Dimensional accuracy of electron beam melting (EBM) additive manufacture with regard to weight optimized truss structures[J]. Journal of Materials Processing Technology, 229, 128-138(2016). http://www.sciencedirect.com/science/article/pii/S0924013615301059

    [19] Casati R, Lemke J, Tuissi A et al. Aging behavior and mechanical performance of 18-Ni 300 steel processed by selective laser melting[J]. Metals, 6, 218(2016). http://www.researchgate.net/publication/307948916_Aging_Behaviour_and_Mechanical_Performance_of_18-Ni_300_Steel_Processed_by_Selective_Laser_Melting

    [20] Song B, Zhao X, Shuai L I et al. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review[J]. Frontiers of Mechanical Engineering, 10, 111-125(2015). http://www.cqvip.com/QK/71236X/201502/665473266.html

    [22] Huang W D, Lin X. Research progress in laser solid forming of high performance metallic components[J]. Materials China, 29, 12-27(2010).

    [23] Zhao X, Wei Q, Song B. et al. Fabrication and characterization of AISI 420 stainless steel using selective laser melting[J]. Materials & Manufacturing Processes, 30, 1283-1289(2015). http://www.tandfonline.com/doi/abs/10.1080/10426914.2015.1026351

    [24] Zhao X. Fundamental research on the microstructure and properties evolution in selective laser melted tool steels[D]. Wuhan: Huazhong University of Science and Technology(2016).

    [25] Sander J, Hufenbach J, Giebeler L et al. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting[J]. Materials & Design, 89, 335-341(2016). http://www.sciencedirect.com/science/article/pii/S0264127515305578

    [26] Chen H, Gu D, Dai D et al. Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts[J]. Materials Science & Engineering A, 682, 279-289(2016). http://www.sciencedirect.com/science/article/pii/S0921509316314022

    [27] Zhao X, Song B, Zhang Y et al. Decarburization of stainless steel during selective laser melting and its influence on Young's modulus, hardness and tensile strength[J]. Materials Science & Engineering A, 647, 58-61(2015). http://www.sciencedirect.com/science/article/pii/S0921509315303099

    [28] Becker T H, Dimitrov D. The achievable mechanical properties of SLM produced maraging steel 300 components[J]. Rapid Prototyping Journal, 22, 487-494(2016). http://www.emeraldinsight.com/doi/full/10.1108/RPJ-08-2014-0096

    [29] Mazur M, Brincat P, Leary M et al. Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 93, 881-900(2017). http://link.springer.com/10.1007/s00170-017-0426-7

    [30] Chen H Y, Gu D D, Gu R H et al. Microstructure evolution and mechanical properties of 5CrNi4Mo die steel parts by selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 43, 0203003(2016).

    [31] Zhou Y Y, Wang F, Xue C. Microstructure and mechanical properties of 3D-printing 18Ni300 die steel[J]. Physical Testing and Chemical Analysis (Physical Testing), 52, 243-246(2016).

    [32] Ren W, Zhang G G, Xu Y X. Performance of 4Cr13 die steel by selective laser melting[J]. China Petroleum Machinery, 44, 107-111(2016).

    [33] Holzweissig M J, Taube A, Brenne F et al. Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting[J]. Metallurgical and Materials Transactions B, 46, 545-549(2015). http://link.springer.com/article/10.1007/s11663-014-0267-9

    [34] Laakso P, Riipinen T, Laukkanen A. et al. Optimization and simulation of SLM process for high density H13 tool steel parts[J]. Physics Procedia, 83, 26-35(2016). http://www.sciencedirect.com/science/article/pii/S1875389216301110

    [35] Zhang C, Chen C J, Wang X N et al. Effect of process parameters on porous titanium structure and mechanism of porous formation in selective laser melting[J]. Chinese Journal of Lasers, 40, 0103003(2013).

    [36] Demir A G, Colombo P, Previtali B. From pulsed to continuous wave emission in SLM with contemporary fiber laser sources: effect of temporal and spatial pulse overlap in part quality[J]. The International Journal of Advanced Manufacturing Technology, 91, 2701-2714(2017). http://link.springer.com/10.1007/s00170-016-9948-7

    [37] Chen D N, Liu T T, Liao W H et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 43, 0403003(2016).

    [38] Deng S S, Yang Y Q, Li Y et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J]. Chinese Journal of Lasers, 43, 1202003(2016).

    [39] Beal V E, Erasenthiran P, Hopkinson N et al. Scanning strategies and spacing effect on laser fusion of H13 tool steel powder using high power Nd∶YAG pulsed laser[J]. International Journal of Production Research, 46, 217-232(2008). http://www.tandfonline.com/doi/full/10.1080/00207540500168279

    [40] Mertens R, Vrancken B, Holmstock N et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts[J]. Physics Procedia, 83, 882-890(2016). http://www.sciencedirect.com/science/article/pii/S1875389216301997

    [41] Almangour B, Grzesiak D, Yang J et al. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting[J]. Materials & Design, 96, 150-161(2016). http://www.sciencedirect.com/science/article/pii/S0264127516301708

    [42] Almangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment[J]. Journal of Materials Processing Technology, 244, 344-353(2017). http://www.sciencedirect.com/science/article/pii/S0924013617300195

    [43] Ahn D G. Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools-state of the art[J]. International Journal of Precision Engineering & Manufacturing, 12, 925-938(2011).

    [44] Pinkerton A J. Lasers in additive manufacturing[J]. Optics & Laser Technology, 7, 58-63(2016).

    [45] Beal V E, Erasenthiran P, Ahrens C H et al. Evaluating the use of functionally graded materials inserts produced by selective laser melting on the injection moulding of plastics parts[J]. Journal of Engineering Manufacture, 221, 945-954(2007). http://www.researchgate.net/publication/48352778_Evaluating_the_use_of_functionally_graded_materials_inserts_produced_by_selective_laser_melting_on_the_injection_moulding_of_plastics_parts

    [46] Armillotta A, Baraggi R, Fasoli S. SLM tooling for die casting with conformal cooling channels[J]. The International Journal of Advanced Manufacturing Technology, 71, 573-583(2014). http://link.springer.com/article/10.1007/s00170-013-5523-7

    [47] Hölker R, Tekkaya A E. Advancements in the manufacturing of dies for hot aluminum extrusion with conformal cooling channels[J]. The International Journal of Advanced Manufacturing Technology, 83, 1209-1220(2016). http://link.springer.com/article/10.1007/s00170-015-7647-4

    [48] Brooks H, Brigden K. Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling[J]. Additive Manufacturing, 11, 16-22(2016). http://www.sciencedirect.com/science/article/pii/S2214860416300409

    [49] Mahshid R, Hansen H N, Højbjerre K L. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications[J]. Materials & Design, 104, 276-283(2016). http://www.sciencedirect.com/science/article/pii/S0264127516306116

    [50] Mazur M, Leary M, Mcmillan M et al. SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices[J]. Rapid Prototyping Journal, 22, 504-518(2016). http://www.emeraldinsight.com/doi/full/10.1108/RPJ-06-2014-0075

    [52] Liu B, Tan J H, Wu C L. Design of injection mould with conformal cooling channel based on 3D printing[J]. Engineering Plastics Application, 41, 71-74(2015).

    [53] Tan J H, Liu B, Wu C L. Design of conformal cooling channel of injection mold based on moldflow and 3D printing[J]. China Plastics Industry, 43, 45-48(2015).

    [54] He B, Li X D, Hu P et al. Investigation of design and manufacture in hot stamping tools with conformal cooling channels based on simulation and 3D-printing technology[J]. Journal of Mechanical Engineering, 52, 180-188(2016).

    Shifeng Wen, Xiantai Ji, Yan Zhou, Qingsong Wei. Development Status and Prospect of Selective Laser Melting of Mould Steels[J]. Laser & Optoelectronics Progress, 2018, 55(2): 011404
    Download Citation