• Photonics Research
  • Vol. 9, Issue 7, 1157 (2021)
Guoqiang Gu1, Pengcheng Zhang1, Sihui Chen1, Yi Zhang1, and Hui Yang1、2、*
Author Affiliations
  • 1Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • 2CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.419106 Cite this Article Set citation alerts
    Guoqiang Gu, Pengcheng Zhang, Sihui Chen, Yi Zhang, Hui Yang. Inflection point: a perspective on photonic nanojets[J]. Photonics Research, 2021, 9(7): 1157 Copy Citation Text show less
    References

    [1] B. S. Luk’yanchuk, Y. W. Zheng, Y. F. Lu. Laser cleaning of solid surface: optical resonance and near-field effects. Proc. SPIE, 4065, 576-587(2000).

    [2] M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer. Optical field enhancement effects in laser-assisted particle removal. Appl. Phys. A, 72, 41-44(2001).

    [3] B. Luk’anchuk. Laser Cleaning(2002).

    [4] Z. Chen, A. Taflove, V. Backman. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express, 12, 1214-1220(2004).

    [5] A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, V. Backman. Photonic nanojets. J. Comput. Theor. Nanosci., 6, 1979-1992(2009).

    [6] X. Li, Z. Chen, A. Taflove, V. Backman. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt. Express, 13, 526-533(2005).

    [7] Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, B. Li. Enhancing upconversion fluorescence with a natural bio-microlens. ACS Nano, 11, 10672-10680(2017).

    [8] H. S. Patel, P. K. Kushwaha, M. K. Swami, P. K. Gupta. Photonic nanojet assisted enhancement in transmission of light through hollow pyramid shaped near field probes. J. Opt., 17, 055005(2015).

    [9] K. J. Yi, H. Wang, Y. F. Lu, Z. Y. Yang. Enhanced Raman scattering by self-assembled silica spherical microparticles. J. Appl. Phys., 101, 063528(2007).

    [10] X. Cui, D. Erni, C. Hafner. Optical forces on metallic nanoparticles induced by a photonic nanojet. Opt. Express, 16, 13560-13568(2008).

    [11] S.-C. Kong, A. Sahakian, A. Taflove, V. Backman. Photonic nanojet-enabled optical data storage. Opt. Express, 16, 13713-13719(2008).

    [12] A. M. Kapitonov, V. N. Astratov. Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities. Opt. Lett., 32, 409-411(2007).

    [13] E. McLeod, C. B. Arnold. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat. Nanotechnol., 3, 413-417(2008).

    [14] J. Li, W. Gao, R. Dong, A. Pei, S. Sattayasamitsathit, J. Wang. Nanomotor lithography. Nat. Commun., 5, 5026(2014).

    [15] B. Yan, L. Yue, J. N. Monks, X. Yang, D. Xiong, C. Jiang, Z. Wang. Superlensing plano-convex-microsphere (PCM) lens for direct laser nano marking and beyond. Opt. Lett., 45, 1168-1171(2020).

    [16] Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun., 2, 218(2011).

    [17] H. Yang, R. Trouillon, G. Huszka, M. A. M. Gijs. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett., 16, 4862-4870(2016).

    [18] D. Ju, H. Pei, Y. Jiang, X. Sun. Controllable and enhanced nanojet effects excited by surface plasmon polariton. Appl. Phys. Lett., 102, 171109(2013).

    [19] M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, F. DeAngelis. Combination of scanning probe technology with photonic nanojets. Sci. Rep., 7, 3474(2017).

    [20] B. Born, J. Krupa, S. Gagnon, J. Holzman. Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching. Nat. Commun., 6, 8097(2015).

    [21] H. Yang, M. Cornaglia, M. A. M. Gijs. Photonic nanojet array for fast detection of single nanoparticles in a flow. Nano Lett., 15, 1730-1735(2015).

    [22] G. Gu, J. Song, M. Chen, X. Peng, H. Liang, J. Qu. Single nanoparticle detection using a photonic nanojet. Nanoscale, 10, 14182-14189(2018).

    [23] Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, B. J. Li. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci. Appl., 5, e16176(2016).

    [24] Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, B. Li. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS Nano, 10, 5800-5808(2016).

    [25] M. S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, H. P. Herzig. Subwavelength focusing of Bloch surface waves. ACS Photon., 4, 1477-1483(2017).

    [26] X. Wu, Y. Wang, Q. Chen, Y.-C. Chen, X. Li, L. Tong, X. Fan. High-Q, low-mode-volume microsphere-integrated Fabry–Perot cavity for optofluidic lasing applications. Photon. Res., 7, 50-60(2019).

    [27] Y. Li, X. Liu, X. Xu, H. Xin, Y. Zhang, B. Li. Red-blood-cell waveguide as a living biosensor and micromotor. Adv. Funct. Mater., 29, 1905568(2019).

    [28] Y.-X. Ren, X. Zeng, L.-M. Zhou, C. Kong, H. Mao, C.-W. Qiu, K. K. Tsia, K. K. Y. Wong. Photonic nanojet mediated backaction of dielectric microparticles. ACS Photon., 7, 1483-1490(2020).

    [29] G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, M. Hong. Super-long photonic nanojet generated from liquid-filled hollow microcylinder. Opt. Lett., 40, 625-628(2015).

    [30] G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, J. Qu. Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets. Sci. Rep., 7, 5635(2017).

    [31] B. S. Luk’yanchunk, R. Paniagua-Dominguez, I. Minin, O. Minin, Z. Wang. Refractive index less than two: photonic nanojets yesterday, today and tomorrow [Invited]. Opt. Mater. Express, 7, 1820-1847(2017).

    [32] J. Zhu, L. L. Goddard. All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. Nanoscale Adv., 1, 4615-4643(2019).

    [33] M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, M. H. Hong. Modulation of photonic nanojets generated by microspheres decorated with concentric rings. Opt. Express, 23, 20096-20103(2015).

    [34] B. Yan, L. Yue, Z. Wang. Engineering near-field focusing of a microsphere lens with pupil masks. Opt. Commun., 370, 140-144(2016).

    [35] M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, M. Hong. Super-focusing of center-covered engineered microsphere. Sci. Rep., 6, 31637(2016).

    [36] M. Wu, R. Chen, J. Ling, Z. Chen, X. Chen, R. Ji, M. Hong. Creation of a longitudinally polarized photonic nanojet via an engineered microsphere. Opt. Lett., 42, 1444-1447(2017).

    [37] L. Yue, B. Yan, J. Monks, R. Dhama, Z. Wang, O. Minin, I. Minin. Intensity-enhanced apodization effect on an axially illuminated circular-column particle-lens. Ann. Phys., 530, 1700384(2018).

    [38] C. Liu, H. Chung, O. V. Minin, I. V. Minin. Shaping photonic hook via well-controlled illumination of finite-size graded-index micro-ellipsoid. J. Opt., 22, 085002(2020).

    [39] I. V. Minin, O. V. Minin, C.-Y. Liu, H.-D. Wei, Y. E. Geints, A. Karabchevsky. Experimental demonstration of a tunable photonic hook by a partially illuminated dielectric microcylinder. Opt. Lett., 45, 4899-4902(2020).

    [40] J. Yang, P. Twardowski, P. Gerard, Y. Duo, J. Fontaine, S. Lecler. Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder. Opt. Express, 26, 3723-3731(2018).

    [41] C.-Y. Liu, F.-C. Lin. Geometric effect on photonic nanojet generated by dielectric microcylinders with non-cylindrical cross-sections. Opt. Commun., 380, 287-296(2016).

    [42] X. Shen, G. Gu, L. Shao, Z. Peng, J. Hu, S. Bandyopadhyay, Y. Liu, J. Jiang, M. Chen. Twin photonic hooks generated by twin-ellipse microcylinder. IEEE Photon. J., 12, 6500609(2020).

    [43] H. Xing, W. Zhou, Y. Wu. Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder. Opt. Lett., 43, 4292-4295(2018).

    [44] F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, W. J. Li. Three-dimensional super-resolution morphology by near-field assisted white-light interferometry. Sci. Rep., 6, 24703(2016).

    [45] A. V. Itagi, W. A. Challener. Optics of photonic nanojets. J. Opt. Soc. Am. A, 22, 2847-2858(2005).

    [46] A. S. Glassner. An Introduction to Ray Tracing(1989).

    [47] M. J. Panik. Growth Curve Modeling: Theory and Applications(2014).

    [48] A. B. Shiflet, G. W. Shiflet. Introduction to Computational Science: Modeling and Simulation for the Sciences(2014).

    [49] J. Stewart. Calculus: Concepts and Contents(2009).

    [50] I. N. Bronshtein, K. A. Semendyayev, G. Musiol, H. Muehlig. Handbook of Mathematics(2007).

    [51] H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, S. Zhuang. Near-field focusing of the dielectric microsphere with wavelength scale radius. Opt. Express, 21, 2434-2443(2013).

    [52] Y. E. Geints, A. A. Zemlyanov, E. K. Panina. Photonic nanojet calculations in layered radially inhomogennous micrometer-sized spherical particles. J. Opt. Soc. Am. B, 28, 1825-1830(2011).

    [53] T. Matsui, K. Tsukuda. Direct imaging of tunable photonic nanojets from a self-assembled liquid crystal microdroplet. Opt. Lett., 42, 4663-4666(2017).

    [54] J. Soh, M. Wu, G. Gu, L. Chen, M. Hong. Temperature-controlled photonic nanojet via VO2 coating. Appl. Opt., 55, 3751-3756(2016).

    [55] Y. E. Geints, A. A. Zemlyanov, E. K. Panina. Photonic nanojet effect in multilayer micrometre-sized spherical particles. Quantum Electron., 41, 520-525(2011).

    [56] L. V. Minin, O. V. Minin, Y. E. Geints. Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: brief review. Ann. Phys., 527, 491-497(2015).

    [57] L. Yue, O. V. Minin, Z. Wang, J. N. Monks, A. S. Shalin, I. V. Minin. Photonic hook: a new curved light beam. Opt. Lett., 43, 771-774(2018).

    [58] G. Gu, L. Shao, J. Song, J. Qu, K. Zheng, X. Shen, Z. Peng, J. Hu, X. Chen, M. Chen, Q. Wu. Photonic hooks from Janus microcylinders. Opt. Express, 27, 37771-37780(2019).

    [59] C.-Y. Liu, H.-J. Chung, E. Hsuan-Pei. Reflective photonic hook achieved by dielectric-coated concave hemi-cylindrical mirror. J. Opt. Soc. Am. B, 37, 2528-2533(2020).

    [60] I. V. Minin, O. V. Minin, G. M. Katyba, N. V. Chernomyrdin, V. N. Kurlov, K. I. Zaytsev, L. Yue, Z. Wang, D. N. Christodoulides. Experimental observation of a photonic hook. Appl. Phys. Lett., 114, 031105(2019).

    [61] Y. Geints, I. V. Minin, O. V. Minin. Tailoring ‘photonic hook’ from Janus dielectric microbar. J. Opt., 22, 065606(2020).

    [62] A. A. R. Neves. Photonic nanojets in optical tweezers. J. Quant. Spectrosc. Radiat. Transfer, 162, 122-132(2015).

    [63] B. Zhang, J. Hao, Z. Shen, H. Wu, K. Zhu, J. Xu, J. Ding. Ultralong photonic nanojet formed by dielectric microtoroid structure. Appl. Opt., 57, 8331-8337(2018).

    Guoqiang Gu, Pengcheng Zhang, Sihui Chen, Yi Zhang, Hui Yang. Inflection point: a perspective on photonic nanojets[J]. Photonics Research, 2021, 9(7): 1157
    Download Citation