• Acta Photonica Sinica
  • Vol. 51, Issue 1, 0151101 (2022)
Yuan GAO, Jianping DING*, and Huitian WANG
Author Affiliations
  • National Laboratory of Solid State Microstructures,School of Physics,Nanjing University,Nanjing 210093,China
  • show less
    DOI: 10.3788/gzxb20225101.0151101 Cite this Article
    Yuan GAO, Jianping DING, Huitian WANG. Manipulation of Multimodal Vector Optical Fields in Three-dimensional Space(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151101 Copy Citation Text show less
    References

    [1] E SNITZER. Cylindrical dielectric waveguide modes. Journal of the Optical Society of America, 51, 491-498(1961).

    [2] D POHL. Operation of a ruby-laser in purely transverse electric mode te01. Applied Physics Letters, 20, 266-267(1972).

    [3] Y MUSHIAKE, N NAKAJIMA, K MATSUMUR. Generation of radially polarized optical beam mode by laser oscillation. Proceedings of the Institute of Electrical and Electronics Engineers, 60, 1107-1109(1972).

    [4] M MARHIC, E GARMIRE. Low-order teoq operation of a co2-laser for transmission through circular metallic wave-guides. Applied Physics Letters, 38, 743-745(1981).

    [5] S C TIDWELL, D H FORD, W D KIMURA. Generating radially polarized beams interferometrically. Applied Optics, 29, 2234-2239(1990).

    [6] S C TIDWELL, G H KIM, W D KIMURA. Efficient radially polarized laser-beam generation with a double interferometer. Applied Optics, 32, 5222-5229(1993).

    [7] R H JORDAN, D G HALL. Free-space azimuthal paraxial wave-equation - the azimuthal bessel-gauss beam solution. Optics Letters, 19, 427-429(1994).

    [8] D G HALL. Vector-beam solutions of maxwell's wave equation. Optics Letters, 21, 9-11(1996).

    [9] K S YOUNGWORTH, T G BROWN. Focusing of high numerical aperture cylindrical-vector beams. Optics Express, 7, 77-87(2000).

    [10] B RICHARDS, E WOLF. Electromagnetic diffraction in optical systems .2. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 253, 358-379(1959).

    [11] G VOLPE, D PETROV. Generation of cylindrical vector beams with few-mode fibers excited by laguerre-gaussian beams. Optics Communications, 237, 89-95(2004).

    [12] V G NIZIEV, R S CHANG, A V NESTEROV. Generation of inhomogeneously polarized laser beams by use of a sagnac interferometer. Applied Optics, 45, 8393-8399(2006).

    [13] G MACHAVARIANI, Y LUMER, I MOSHE et al. Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams. Optics Communications, 281, 732-738(2008).

    [14] Xilin WANG, Yongnan LI, Jing CHEN et al. A new type of vector fields with hybrid states of polarization. Optics Express, 18, 10786-10795(2010).

    [15] Xilin WANG, Bing GU, Jing CHEN et al. Vector fields with hybrid states of polarization and their orbital angular momentum(2011).

    [16] C GABRIEL, A AIELLO, W ZHONG et al. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes. Physical Review Letters, 106, 060502(2011).

    [17] C VARIN, M PICHE. Acceleration of ultra-relativistic electrons using high-intensity tm01 laser beams. Applied Physics B-Lasers and Optics, 74-S83-S88(2002).

    [18] L NOVOTNY, M R BEVERSLUIS, K S YOUNGWORTH et al. Longitudinal field modes probed by single molecules. Physical Review Letters, 86, 5251-5254(2001).

    [19] A CIATTONI, B CROSIGNANI, P DI PORTO et al. Azimuthally polarized spatial dark solitons: Exact solutions of maxwell's equations in a kerr medium. Physical Review Letters, 94, 073902(2005).

    [20] M MEIER, V ROMANO, T FEURER. Material processing with pulsed radially and azimuthally polarized laser radiation. Applied Physics a-Materials Science & Processing, 86, 329-334(2007).

    [21] Kai LOU, Shengxia QIAN, Xilin WANG et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon. Optics Express, 20, 120-127(2012).

    [22] Hikaru KAWAUCHI, Kazuhiro YONEZAWA, Yuichi KOZAWA et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. Optics Letters, 32, 1839-1841(2007).

    [23] Q W ZHAN. Trapping metallic rayleigh particles with radial polarization. Optics Express, 12, 3377-3382(2004).

    [24] Jin ZHANG, Xiaoyan YU, Yuqing CHEN et al. Generation and manipulation of the circular airy vector beams by dielectric metasurface(2019).

    [25] M A BANDRES, J C GUTIERREZ-VEGA. Vector helmholtz-gauss and vector laplace-gauss beams. Optics Letters, 30, 2155-2157(2005).

    [26] Zhenxing LIU, Yuanyuan LIU, Yougang KE et al. Generation of arbitrary vector vortex beams on hybrid-order poincare sphere. Photonics Research, 5, 15-21(2017).

    [27] Hao CHEN, Zhongliang YU, Jingjing HAO et al. Separation of spin angular momentum in space-variant linearly polarized beam. Applied Physics B-Lasers and Optics, 114, 355-359(2014).

    [28] Z BOUCHAL, M OLIVIK. Non-diffractive vector bessel beams. Journal of Modern Optics, 42, 1555-1566(1995).

    [29] A CHAFIQ, Z HRICHA, A BELAFHAL. Propagation properties of vector mathieu-gauss beams. Optics Communications, 275, 165-169(2007).

    [30] Wen CHENG, J W HAUS, Qiwen ZHAN. Propagation of vector vortex beams through a turbulent atmosphere. Optics Express, 17, 17829-17836(2009).

    [31] Kun HUANG, Peng SHI, G W CAO et al. Vector-vortex bessel-gauss beams and their tightly focusing properties. Optics Letters, 36, 888-890(2011).

    [32] G MILIONE, A N THIEN, J LEACH et al. Using the nonseparability of vector beams to encode information for optical communication. Optics Letters, 40, 4887-4890(2015).

    [33] Wei HAN, Yanfang YANG, Wen CHENG et al. Vectorial optical field generator for the creation of arbitrarily complex fields. Optics Express, 21, 20692-20706(2013).

    [34] Zhaozhong CHEN, Tingting ZENG, Binjie QIAN et al. Complete shaping of optical vector beams. Optics Express, 23, 17701-17710(2015).

    [35] Sheng LIU, Shuxia QI, Yi ZHANG et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photonics Research, 6, 228-233(2018).

    [36] J A RODRIGO, T ALIEVA. Light shaping along 3d curves and particle manipulation(2015).

    [37] Chenliang CHANG, Yuan GAO, Jianpei XIA et al. Shaping of optical vector beams in three dimensions. Optics Letters, 42, 3884-3887(2017).

    [38] Peng LI, Dongjing WU, Sheng LIU et al. Three-dimensional modulations on the states of polarization of light fields. Chinese Physics B, 27, 114201(2018).

    [39] Haoran REN, Wei SHAO, Yi LI et al. Three-dimensional vectorial holography based on machine learning inverse design. Science Advances, 6, eaaz4261(2020).

    [40] G MILIONE, H I SZTUL, D A NOLAN et al. Higher-order poincare sphere, stokes parameters, and the angular momentum of light. Physical Review Letters, 107, 053601(2011).

    [41] Xunong YI, Yachao LIU, Xiaohui LING et al. Hybrid-order poincare sphere. Physical Review A, 91, 023801(2015).

    [42] Zhicheng REN, Lingjun KONG, Simin LI et al. Generalized poincare sphere. Optics Express, 23, 26586-26595(2015).

    [43] Y YIRMIYAHU, A NIV, G BIENER et al. Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures. Optics Express, 15, 13404-13414(2007).

    [44] M A AHMED, A VOSS, M M VOGEL et al. Multilayer polarizing grating mirror used for the generation of radial polarization in yb : Yag thin-disk lasers. Optics Letters, 32, 3272-3274(2007).

    [45] Jianlang LI, Kenichi UEDA, M MUSHA et al. Generation of radially polarized mode in yb fiber laser by using a dual conical prism. Optics Letters, 31, 2969-2971(2006).

    [46] R ORON, S BLIT, N DAVIDSON et al. The formation of laser beams with pure azimuthal or radial polarization. Applied Physics Letters, 77, 3322-3324(2000).

    [47] M FRIDMAN, G MACHAVARIANI, N DAVIDSON et al. Fiber lasers generating radially and azimuthally polarized light. Applied Physics Letters, 93, 191104(2008).

    [48] Z BOMZON, G BIENER, V KLEINER et al. Space-variant pancharatnam-berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 27, 1141-1143(2002).

    [49] Simin LI, Shengxia QIAN, Lingjun KONG et al. An efficient and robust scheme for controlling the states of polarization in a sagnac interferometric configuration. Europhysics Letters, 105, 64006(2014).

    [50] Xilin WANG, Jianping DING, Weijiang NI et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Optics Letters, 32, 3549-3551(2007).

    [51] C MAURER, A JESACHER, S FUERHAPTER et al. Tailoring of arbitrary optical vector beams. New Journal of Physics, 9, 78(2007).

    [52] Lei GONG, Yuxuan REN, Weiwei LIU et al. Generation of cylindrically polarized vector vortex beams with digital micromirror device. Journal of Applied Physics, 116, 183105(2014).

    [53] K J MITCHELL, S TURTAEV, M J PADGETT et al. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Optics Express, 24, 29270-29283(2016).

    [54] Yansheng LIANG, Shaohui YAN, Minru HE et al. Generation of a double-ring perfect optical vortex by the fourier transform of azimuthally polarized bessel beams. Optics Letters, 44, 1504-1507(2019).

    [55] Binjie QIAN, Tingting ZENG, Zhaozhong CHEN et al. Generation of vector beams using a wollaston prism and a spatial light modulator. Optik, 148, 312-318(2017).

    [56] Xinyi WANG, Yuan GAO, Zhaozhong CHEN et al. Dynamic shaping of vectorial optical fields based on two-dimensional blazed holographic grating. Chinese Physics B, 29, 014208(2020).

    [57] S NGCOBO, I LITVIN, L BURGER et al. A digital laser for on-demand laser modes. Nature Communications, 4, 2289(2013).

    [58] Biao SUN, Anting WANG, Lixin XU et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber bragg grating. Optics Letters, 37, 464-466(2012).

    [59] Haoran LV, Xiaoqing LU, Yuansheng HAN et al. Metasurface cylindrical vector light generators based on nanometer holes. New Journal of Physics, 21, 123047(2019).

    [60] Yuan ZHOU, Xing LI, Yanan CAI et al. Compact optics module to generate arbitrary vector vortex beams. Applied Optics, 59, 8932-8938(2020).

    [61] Yuan GAO, Zhaozhong CHEN, Jianping DING et al. Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams. Applied Optics, 58, 6591-6596(2019).

    [62] Jian CHEN, Yue WANG, Chenhao WAN et al. Compact vectorial optical field generator based on a 10-megapixel resolution liquid crystal spatial light modulator. Optics Communications, 495, 127112(2021).

    [63] Jianpei XIA, Chenliang CHANG, Zhaozhong CHEN et al. Pixel-addressable phase calibration of spatial light modulators: a common-path phase-shifting interferometric microscopy approach. Journal of Optics, 19, 125701(2017).

    [64] Rui LIU, Lingjun KONG, Wenrong QI et al. Compact, robust, and high-efficiency generator of vector optical fields. Optics Letters, 44, 2382-2385(2019).

    [65] Zhicheng REN, Zimo CHENG, Xilin WANG et al. Polarization interferometric prism: A versatile tool for generation of vector fields, measurement of topological charges, and implementation of a spin-orbit controlled-not gate. Applied Physics Letters, 118, 011105(2021).

    [66] Rui SUN, Chuanfu CHENG, Ruirui ZHANG et al. Spatially multiplexing of metasurface for manipulating the focused trefoil and cinquefoil vector light field. Nanomaterials, 11, 858(2021).

    [67] Mingze LIU, Pengcheng HUO, Wenqi ZHU et al. Broadband generation of perfect poincare beams via dielectric spin-multiplexed metasurface. Nature Communications, 12, 2230(2021).

    [68] Dongyi WANG, Feifei LIU, Tong LIU et al. Efficient generation of complex vectorial optical fields with metasurfaces. Light-Science & Applications, 10, 67(2021).

    [69] Xilin WANG, Jing CHEN, Yongnan LI et al. Optical orbital angular momentum from the curl of polarization. Physical Review Letters, 105, 253602(2010).

    [70] Hao CHEN, Jingjing HAO, Baifu ZHANG et al. Generation of vector beam with space-variant distribution of both polarization and phase. Optics Letters, 36, 3179-3181(2011).

    [71] O MENDOZA-YERO, G MINGUEZ-VEGA, J LANCIS. Encoding complex fields by using a phase-only optical element. Optics Letters, 39, 1740-1743(2014).

    [72] T W CLARK, R F OFFER, S FRANKE-ARNOLD et al. Comparison of beam generation techniques using a phase only spatial light modulator. Optics Express, 24, 6249-6264(2016).

    [73] W H LEE. Binary computer-generated holograms. Applied Optics, 18, 3661-3669(1979).

    [74] S A GOORDEN, J BERTOLOTTI, A P MOSK. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Optics Express, 22, 17999-18009(2014).

    [75] X D XUN, R W COHN. Phase calibration of spatially nonuniform spatial light modulators. Applied Optics, 43, 6400-6406(2004).

    [76] Lei YANG, Jun XIA, Chenliang CHANG et al. Nonlinear dynamic phase response calibration by digital holographic microscopy. Applied Optics, 54, 7799-7806(2015).

    [77] J L MARTINEZ FUENTES, E J FERNANDEZ, P M PRIETO et al. Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating. Optics Express, 24, 14159-14171(2016).

    [78] T CIZMAR, M MAZILU, K DHOLAKIA. In situ wavefront correction and its application to micromanipulation. Nature Photonics, 4, 388-394(2010).

    [79] J H HANNAY. The majorana representation of polarization, and the berry phase of light. Journal of Modern Optics, 45, 1001-1008(1998).

    [80] Xilin WANG, Jianping DING, Jianqi QIN et al. Configurable three-dimensional optical cage generated from cylindrical vector beams. Optics Communications, 282, 3421-3425(2009).

    [81] Hao CHEN, Yunfeng GUO, Zhaozhong CHEN et al. Holographic optical tweezers obtained by using the three-dimensional gerchberg-saxton algorithm. Journal of Optics, 15, 035401(2013).

    [82] Zhaozhong CHEN, Tingting ZENG. DING Jianping Reverse engineering approach to focus shaping. Optics Letters, 41, 1929-1932(2016).

    [83] Guanlin ZHANG, Xuzhen GAO, Yue PAN et al. Inverse method to engineer uniform-intensity focal fields with arbitrary shape. Optics Express, 26, 16782-16796(2018).

    [84] Ruipin CHEN, Zhaozhong CHEN, Yuan GAO et al. Flexible manipulation of the polarization conversions in a structured vector field in free space. Laser & Photonics Reviews, 11, 1700165(2017).

    [85] E OTTE, C ROSALES-GUZMAN, B NDAGANO et al. Entanglement beating in free space through spin-orbit coupling. Light-Science & Applications, 7, 18009(2018).

    [86] L ALLEN, M W BEIJERSBERGEN, R J C SPREEUW et al. Orbital angular-momentum of light and the transformation of laguerre-gaussian laser modes. Physical Review A, 45, 8185-8189(1992).

    [87] D MCGLOIN, K DHOLAKIA. Bessel beams: Diffraction in a new light. Contemporary Physics, 46, 15-28(2005).

    [88] G A SIVILOGLOU, J BROKY, A DOGARIU et al. Observation of accelerating airy beams. Physical Review Letters, 99, 213901(2007).

    [89] V GARCES-CHAVEZ, D MCGLOIN, M J PADGETT et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Physical Review Letters, 91, 093602(2003).

    [90] M A BANDRES, J C GUTIERREZ-VEGA. Ince-gaussian modes of the paraxial wave equation and stable resonators. Journal of the Optical Society of America a-Optics Image Science and Vision, 21, 873-880(2004).

    [91] J DURNIN, J J MICELI, J H EBERLY. Diffraction-free beams. Physical Review Letters, 58, 1499-1501(1987).

    [92] O BRZOBOHATY, T CIZMAR, P ZEMANEK. High quality quasi-bessel beam generated by round-tip axicon. Optics Express, 16, 12688-12700(2008).

    [93] T CIZMAR, V KOLLAROVA, X TSAMPOULA et al. Generation of multiple bessel beams for a biophotonics workstation. Optics Express, 16, 14024-14035(2008).

    [94] M ZAMBONI-RACHED, E RECAMI, H E HERNANDEZ-FIGUEROA. Theory of "frozen waves": Modeling the shape of stationary wave fields. Journal of the Optical Society of America A-Optics Image Science and Vision, 22, 2465-2475(2005).

    [95] T CIZMAR, K DHOLAKIA. Tunable bessel light modes: Engineering the axial propagation. Optics Express, 17, 15558-15570(2009).

    [96] R DHARMAVARAPU, S BHATTACHARYA, S JUODKAZIS. Diffractive optics for axial intensity shaping of bessel beams. Journal of Optics, 20, 085606(2018).

    [97] Runze LI, Xianghua YU, Tong PENG et al. Shaping the on-axis intensity profile of generalized bessel beams by iterative optimization methods. Journal of Optics, 20, 085603(2018).

    [98] I MORENO, J A DAVIS, M M SANCHEZ-LOPEZ et al. Nondiffracting bessel beams with polarization state that varies with propagation distance. Optics Letters, 40, 5451-5454(2015).

    [99] Peng LI, Yi ZHANG, Sheng LIU et al. Quasi-bessel beams with longitudinally varying polarization state generated by employing spectrum engineering. Optics Letters, 41, 4811-4814(2016).

    [100] Wenxiang YAN, Yuan GAO, Zheng YUAN et al. Non-diffracting and self-accelerating bessel beams with on-demand tailored intensity profiles along arbitrary trajectories. Optics Letters, 46, 1494-1497(2021).

    [101] Chunjuan LIANG, Zheng YUAN, Wenxiang YAN et al. Radially self-accelerating stokes vortices in nondiffracting bessel⁃poincaré beams. Applied Optics, 60, 8659-8666(2021).

    [102] M BERRY. Making waves in physics - three wave singularities from the miraculous 1830s. Nature, 403, 21-21(2000).

    [103] M S SOSKIN, M V VASNETSOV. Singular optics, 219-276.

    [104] Qiwen ZHAN. Cylindrical vector beams: From mathematical concepts to applications. Advances in Optics and Photonics, 1, 1-57(2009).

    [105] Renlong YU, Yu XIN, Qi ZHAO et al. Array of polarization singularities in interference of three waves. Journal of the Optical Society of America a-Optics Image Science and Vision, 30, 2556-2560(2013).

    [106] RUCHI , S K PAL, P SENTHILKUMARAN. Generation of v-point polarization singularity lattices. Optics Express, 25, 19326-19331(2017).

    [107] Guanlin ZHANG, Chenghou TU, Yongnan LI et al. Observation of polarization topological singular lines. Photonics Research, 7, 705-710(2019).

    [108] H LAROCQUE, D SUGIC, D MORTIMER et al. Reconstructing the topology of optical polarization knots. Nature Physics, 14, 1079-1082(2018).

    [109] I FREUND, A I MOKHUN, M S SOSKIN et al. Stokes singularity relations. Optics Letters, 27, 545-547(2002).

    [110] Yue PAN, Jianping DING, Huitian WANG. Manipulation on novel vector optical fields: Introduction, advances and applications. Acta Optica Sinica, 39, 0126001(2019).

    [111] D C BENITO, D M CARBERRY, S H SIMPSON et al. Constructing 3d crystal templates for photonic band gap materials using holographic optical tweezers. Optics Express, 16, 13005-13015(2008).

    [112] Linwei ZHU, Meiyu SUN, Mengjun ZHU et al. Three-dimensional shape-controllable focal spot array created by focusing vortex beams modulated by multi-value pure-phase grating. Optics Express, 22, 21354-21367(2014).

    [113] Duo DENG, Yan LI, Yanhua HAN et al. Perfect vortex in three-dimensional multifocal array. Optics Express, 24, 28270-28278(2016).

    [114] Hao CHEN, Zhu ZHENG, Baifu ZHANG et al. Polarization structuring of focused field through polarization-only modulation of incident beam. Optics Letters, 35, 2825-2827(2010).

    [115] Tingting ZENG, Chenliang CHANG, Zhaozhong CHEN et al. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding. Journal of Optics, 20, 065605(2018).

    [116] Yanlei HU, Zhongyu WANG, Xuewen WANG et al. Efficient full-path optical calculation of scalar and vector diffraction using the bluestein method. Light-Science & Applications, 9, 119(2020).

    [117] E G ABRAMOCHKIN, V G VOLOSTNIKOV. Spiral light beams. Physics-Uspekhi, 47, 1177-1203(2004).

    [118] J A RODRIGO, T ALIEVA, E ABRAMOCHKIN et al. Shaping of light beams along curves in three dimensions. Optics Express, 21, 20544-20555(2013).

    [119] J A RODRIGO, T ALIEVA. Polymorphic beams and nature inspired circuits for optical current. Scientific Reports, 6, 35341(2016).

    [120] P VAITY, L RUSCH. Perfect vortex beam: Fourier transformation of a bessel beam. Optics Letters, 40, 597-600(2015).

    [121] J A RODRIGO, T ALIEVA. Vector polymorphic beam. Scientific Reports, 8, 7698(2018).

    [122] Zheng YUAN, Yuan GAO, Zhuang WANG et al. Curvilinear poincare vector beams. Chinese Optics Letters, 19, 032602(2021).

    [123] Zhuang WANG, Zheng YUAN, Yuan GAO et al. Twin curvilinear vortex beams. Optics Express, 29, 14112-14125(2021).

    [124] V GARCES-CHAVEZ, K VOLKE-SEPULVEDA, S CHAVEZ-CERDA et al. Transfer of orbital angular momentum to an optically trapped low-index particle. Physical Review A, 66, 063402(2002).

    [125] Yansheng LIANG, Ming LEI, Shaohui YAN et al. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex. Applied Optics, 57, 79-84(2018).

    [126] E OTTE, C ALPMANN, C DENZ. Polarization singularity explosions in tailored light fields. Laser & Photonics Reviews, 12, 1870028(2018).

    [127] Qiang WANG, Chenghou TU, Yongnan LI et al. Polarization singularities: Progress, fundamental physics, and prospects. Apl Photonics, 6, 040901(2021).

    [128] Lin LI, Chenliang CHANG, Xiangzheng YUAN et al. Generation of optical vortex array along arbitrary curvilinear arrangement. Optics Express, 26, 9798-9812(2018).

    [129] Chenliang CHANG, Lin LI, Yuan GAO et al. Tunable polarization singularity array enabled using superposition of vector curvilinear beams. Applied Physics Letters, 114, 041101(2019).

    [130] A ASHKIN. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 24, 156-159(1970).

    [131] H HE, M E J FRIESE, N R HECKENBERG et al. Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity. Physical Review Letters, 75, 826-829(1995).

    [132] H HE, N R HECKENBERG, H RUBINSZTEINDUNLOP. Optical-particle trapping with higher-order doughnut beams produced using high-efficiency computer-generated holograms. Journal of Modern Optics, 42, 217-223(1995).

    [133] M P MACDONALD, L PATERSON, K VOLKE-SEPULVEDA et al. Creation and manipulation of three-dimensional optically trapped structures. Science, 296, 1101-1103(2002).

    [134] T CIZMAR, V GARCES-CHAVEZ, K DHOLAKIA et al. Optical conveyor belt for delivery of submicron objects. Applied Physics Letters, 86, 174101(2005).

    [135] Y ROICHMAN, Bo SUN, Y ROICHMAN et al. Optical forces arising from phase gradients. Physical Review Letters, 100, 013602(2008).

    [136] S LEE, Y ROICHMAN, D G GRIER. Optical solenoid beams. Optics Express, 18, 6988-6993(2010).

    [137] E R SHANBLATT, D G GRIER. Extended and knotted optical traps in three dimensions. Optics Express, 19, 5833-5838(2011).

    [138] J A RODRIGO, T ALIEVA. Freestyle 3d laser traps: Tools for studying light-driven particle dynamics and beyond. Optica, 2, 812-815(2015).

    [139] Xiangping LI, T LAN, C TIEN et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nature Communications, 3, 998(2012).

    [140] O BRZOBOHATY, V KARASEK, M SILER et al. Experimental demonstration of optical transport, sorting and self-arrangement using a 'tractor beam'. Nature Photonics, 7, 123-127(2013).

    [141] V SHVEDOV, A R DAVOYAN, C HNATOVSKY et al. A long-range polarization-controlled optical tractor beam. Nature Photonics, 8, 846-850(2014).

    [142] S W HELL. Far-field optical nanoscopy. Science, 316, 1153-1158(2007).

    [143] G BAUTISTA, M J HUTTUNEN, J MAKITALO et al. Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams. Nano Letters, 12, 3207-3212(2012).

    [144] Yifan ZHAO, Jian WANG. High-base vector beam encoding/decoding for visible-light communications. Optics Letters, 40, 4843-4846(2015).

    [145] T BAUER, P BANZER, E KARIMI et al. Observation of optical polarization mobius strips. Science, 347, 964-966(2015).

    Yuan GAO, Jianping DING, Huitian WANG. Manipulation of Multimodal Vector Optical Fields in Three-dimensional Space(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151101
    Download Citation