• Infrared and Laser Engineering
  • Vol. 47, Issue 6, 606007 (2018)
Li Jingzhao1、2、*, Chen Zhenqiang2, and Zhu Siqi2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.0606007 Cite this Article
    Li Jingzhao, Chen Zhenqiang, Zhu Siqi. High-peak-power and short-pulse laser with a Yb:YAG/Cr4+:YAG/YAG composite crystal[J]. Infrared and Laser Engineering, 2018, 47(6): 606007 Copy Citation Text show less
    References

    [1] Dong J, Ueda K I, Yagi H, et al. Laser-diode pumped self-Q-switched microchip lasers [J]. Optical Review, 2008, 15(2): 57-74.

    [2] Sakai H, Kan H, Taira T. >1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser [J]. Optics Express, 2008, 16(24): 19891-19899.

    [3] Lee H C, Brownlie P L, Meissner H E, et al. Diffusion bonded composites of YAG single crystals [C]//Proceedings of SPIE, 1991, 1624: 2-10.

    [4] Miao Jieguang, Wang Baoshan, Peng Jiying, et al. Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal [J]. Optics and Laser Technology, 2008, 40(1): 137-141.

    [5] Tsunekane M, Taira T. Long time operation of composite ceramic Nd:YAG/Cr:YAG micro-chip lasers for ignition [C]//Laser Ignition Conference. Illinois: Optical Society of America, 2015, T4A.3.

    [6] Zhu S Q, Wang S E, Chen Z Q, et al. High-power passively Q-switched 532 nm green laser by using Nd:YAG/Cr4+:YAG composite crystal [J]. Laser Physics, 2012, 22(6): 1011-1014.

    [7] Jiang Wei, Zhu Siqi, Chen Xuezhang, et al. Compact passively Q-switched Raman laser at 1 176 nm and yellow laser at 588 nm using Nd3+:YAG/Cr4+:YAG composite crystal [J]. Applied Optics, 2014, 53(7): 1328-1332.

    [8] Jie Song, Cheng Li, Kenichi Ueda. Thermal influence of saturable absorber in passively Q-switched diode-pumped CW Nd:YAG/Cr4+:YAG laser [J]. Optics Communications, 2000, 177: 307-316.

    [9] Jiang W, Zhu S, Chen Z Q, et al. Green laser with V-shaped resonant cavity based on Nd:YAG/Cr4+:YAG/YAG composite crystal rod [J]. Journal of Applied Spectroscopy, 2013, 80(5): 694-697.

    [10] Zhu S, Chen Z, Chen Z, et al. Diode-side-pumped passively Q-switched mode-locked 532 nm laser with a Nd:YAG/Cr4+:YAG/YAG composite crystal [J]. Journal of Russian Laser Research, 2013, 34(6): 575-580.

    [11] Chen Zaijun, Zhu Siqi, Chen Yujiao, et al. Comparison of passively Q-switched LD side-pumped green laser by using Nd3+:YAG/Cr4+:YAG/YAG composite crystals of different initial transmissions [J]. Optics and Laser Technology, 2013, 54: 362-366.

    [12] Wang S, Zhu S, Chen Z, et al. High average power, side-pumped passively Q-switched laser of 1 064 nm by using composite crystal Nd:YAG/Cr4+:YAG/YAG [J]. Journal of Optics, 2014, 43(3): 183-187.

    [13] Zhu S, He Q, Wang S, et al. High average power passively Q-switched laser diode side-pumped green laser by using Nd:YAG/Cr4+:YAG/YAG composite crystal [J]. Journal of Laser Applications, 2014, 26(3): 032009.

    [14] Zhu Siqi, Chen Zaijun, Chen Zhenqiang, et al. A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal [J]. Optics and Laser Technology, 2014, 63: 24-28.

    [15] Zhu Siqi, Zhou Haiqiong, Jiang Wei, et al. Compact and efficient passively Q-switched laser at 473 nm with an Nd:YAG/YAG/Cr4+:YAG/YAG multifunctional composite crystal [J]. Applied Optics, 2016, 55(15): 4166-4169.

    [16] Jiang Wei, Liu Yumeng, Chen Weidong, et al. Composite Yb:YAG/Cr4+:YAG/YAG crystal passively Q-switched lasers at 1 030 nm [J]. Applied Optics, 2015, 54(7): 1834-1838.

    [17] Ye Pingping, Zhu Siqi, Li Zhen, et al. Passively Q-switched dual-wavelength green laser with an Yb:YAG/Cr4+:YAG/YAG composite crystal[J]. Optics Express, 2017, 25(5): 5179-5185.

    [18] Dong Jun, Deng Peizhen, Liu Yupu, et al. Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber [J]. Applied Optics, 2001, 40(24): 4303-4307.

    [19] Bibeau C, Beach R J, Mitchell S C, et al. High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser[J]. IEEE Journal of Quantum Electronics, 1998, 34(10): 2010-2019.

    [20] Bruesselbach H W, Sumida D S, Reeder R A, et al. Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1): 105-116.

    [21] Lacovara P, Choi H K, Wang C A, et al. Room-temperature diode-pumped Yb:YAG laser [J]. Optics Letters, 1991, 16(14): 1089-1091.

    [22] Koerner J, Vorholt C, Liebetrau H, et al. Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 ℃ and 200 ℃and predictions on their influence on laser performance [J]. Journal of the Optical Society of America B, 2012, 29(9): 2493-2502.

    [23] Zhu Siqi, Jiang Wei, Liu Yumeng, et al. Pulse fluctuations caused by the thermal lens effect in a passively Q-switched laser system [J]. Journal of Russian Laser Research, 2015, 36(4): 377-384.

    CLP Journals

    [1] Hu Xing, Cheng Dejiang, Guo Zhiyan, Jiang Menghua, Hui Yongling, Lei Hong, Li Qiang. Highly efficient RTP electro-optic Q-switched Nd:YVO4 laser by end-pumping at 914 nm[J]. Infrared and Laser Engineering, 2019, 48(1): 105001

    Li Jingzhao, Chen Zhenqiang, Zhu Siqi. High-peak-power and short-pulse laser with a Yb:YAG/Cr4+:YAG/YAG composite crystal[J]. Infrared and Laser Engineering, 2018, 47(6): 606007
    Download Citation