• Acta Photonica Sinica
  • Vol. 46, Issue 7, 701005 (2017)
XUE Yang1、*, MA Lihua1, SHI Lei1, LUO Junwen1, XU Zhiyan1, LI Na1, and JI Yiming2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20174607.0701005 Cite this Article
    XUE Yang, MA Lihua, SHI Lei, LUO Junwen, XU Zhiyan, LI Na, JI Yiming. Performance Analysis of Free Space Quantum Key Distribution Based on Refraction of Turbulence Bubble[J]. Acta Photonica Sinica, 2017, 46(7): 701005 Copy Citation Text show less
    References

    [1] BONATO C,TOMAELLO A, DEPPO VD, et al. Feasibility of satellite quantum key distribution[J]. New Journal of Physics, 2009, 11(4): 045017.

    [2] URSIN R, ZEILINGER A. 143 km free space quantum teleportation[C]. SPIE, The International Society for Optical Engineering, 2014, 9225: 92250H.

    [3] VILLORESI P, JENNEWEIN T, TAMBURINI F, et al. Experimental verification of the feasibility of a quantum channel between space and earth[J]. New Journal of Physics, 2008, 10(3): 3436 3440.

    [4] JIN X M, REN J G, YANG B, et al. Experimental free space quantum teleportation[J]. Nature Photonics, 2010, 4(6): 376-381.

    [5] NAUERTH S, MOLL F, RAU M, et al. Air to ground quantum communication[J]. Nature Photonics, 2013, 7(5): 382 386.

    [6] CAPRARO I, TOMAELLO, DALLARCHE A, et al. Turbulent single-photon propagation in the canary optical link[J]. No Shinkei Geka Neurological Surgery, 2014, 1633(1): 128 130.

    [7] NIE Min, REN Jiamin, YANG Guang, et al. Influences of nonspherical aerosol particles and relative humidity of atmosphere on the performance of free space quantum communication[J]. Acta Physica Sinica , 2016, 65(19): 190301.

    [8] NIE Min, SHANG Penggang, YANG Guang, et al. Influences of mesoscale sandstorm on the quantum satellite communication channel and performance simulation[J]. Acta Physica Sinica , 2014, 63(24): 240303.

    [9] NIE Min, REN Jiamin, YANG Guang, et al. Influences of PM2.5 atmospheric pollution on the performance of free space quantum communication[J]. Acta Physica Sinica , 2015, 64(15): 150301.

    [10] NIE Min, WANG Yong, YANG Guang, et al. Optimal mean photon number of decoy state protocol based on chameleon self adaptive strategy under the background of rainfall[J]. Acta Physica Sinica , 2016, 65(2): 020302.

    [11] NIE Min, GAO Kun, YANG Guang, et al. Effect of the atmospheric turbulence on the performance of free space quantum communication[J]. Acta Photonica Sinica, 2016, 45(7): 0701001.

    [12] LIU C Q, ZHU C H, WANG L H, et al. Polarization Encoding Based Measurement Device Independent quantum key distribution with a single untrusted source[J]. Chinese Physics Letters, 2016,33(10): 100301.

    [13] YU Chongyuan, LI Ming, LU Pengfei, et al. Photon polarizations in free space quantum communication[J]. Journal of Beijing University of Posts and Telecommunications, 2013, 36(2): 1 9.

    [14] SCHMITT M T, WEIER H, FURST M, et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km[J]. Physical Review Letters, 2007, 98(1): 010504.

    [15] LYLOVA A, KUDRYASHOV A, SHELDAKOVA J, et al. A new method of the real-time atmospheric turbulence modeling[C]. Laser Optics,2016 International Conference. IEEE, 2016, R: 4 12.

    [16] YUKSEL D, YUKSEL H. Geometrical Monte Carlo simulation of atmospheric turbulence[C]. SPIE, Optical Engineering Applications. International Society for Optics and Photonics, 2013, 88740U: 1 6.

    [17] ZHOU Fei, YONG Hailin, LI Dongdong, et al. Study on quantum key distribution between different media[J]. Acta Physica Sinica , 2014, 63(14): 140303.

    [18] CHARNOTSKII M. Extended HuygensFresnel principle and optical waves propagation in turbulence: discussion[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2015, 32(7): 1357 1365.

    [19] CHEN Chunyi, YANG Huamin, FENG Xin, et al. Monte Carlo simulation of beam wander in atmospheric turbulence based on spherical bubble model[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2008, 31(3): 16 19.

    [20] HWANG W Y. Quantum key distribution with high loss: toward global secure communication[J]. Physical Review Letters, 2003, 91(5): 057901.

    [21] GOTTESMAN D, LO H K, LUTKENHAUS N, et al. Security of quantum key distribution with imperfect devices[C] Information Theory, ISIT 2004. Proceedings International Symposium on. IEEE, 2004: 136.

    [22] XU F, CURTY M, QI B, et al. Practical aspects of measurement device independent quantum key distribution[J]. New Journal of Physics, 2013, 15(21): 3813 3818.

    [23] COLES P J, METODIEV E M, LUTKENHAUS N. Numerical approach for unstructured quantum key distribution[J]. Nature Communications, 2016, 7: 11712.

    XUE Yang, MA Lihua, SHI Lei, LUO Junwen, XU Zhiyan, LI Na, JI Yiming. Performance Analysis of Free Space Quantum Key Distribution Based on Refraction of Turbulence Bubble[J]. Acta Photonica Sinica, 2017, 46(7): 701005
    Download Citation