• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 5, 589 (2021)
Jia-wei GUO, Wei TAN, Jian-lan XIE, and Jian-jun LIU*
Author Affiliations
  • Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices,School of Physics and Electronics,Hunan University,Changsha 410082,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.05.004 Cite this Article
    Jia-wei GUO, Wei TAN, Jian-lan XIE, Jian-jun LIU. One-dimensional photonic quasi-crystal plano-V lens[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 589 Copy Citation Text show less
    References

    [1] Z Wang, K Su, B Feng et al. Coupling length variation and multi-wavelength demultiplexing in photonic crystal waveguides. Chin. Opt. Lett., 16, 48-52(2018).

    [2] Z Pang, H Tong, X Wu et al. Theoretical study of multiexposure zeroth-order waveguide mode interference lithography. Opt. Quant. Electron, 50, 335(2018).

    [3] H Tong, Y Xu, Y Su et al. Theoretical study for fabricating elliptical subwavelength nanohole arrays by higher-order waveguide-mode interference. Results Phys., 14, 102460(2019).

    [4] X Wang, J Zhu, X Wen et al. Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film. Opt. Mater. Express, 9, 3079-3088(2019).

    [5] X Wang, Z Pang, H Yang et al. Theoretical study of subwavelength circular grating fabrication based on continuously exposed surface plasmon interference lithography. Results Phys., 14, 102446(2019).

    [6] J Chen, X Wang, F Tang et al. Substrates for surface-enhanced Raman spectroscopy based on TiN plasmonic antennas and waveguide platforms. Results Phys., 16, 102867(2020).

    [7] J Li, X Chen, Z Yi et al. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater. Today Energy, 16, 100390(2020).

    [8] H Wu, H Jile, Z Chen et al. Fabrication of ZnO@ MoS2 Nanocomposite heterojunction arrays and their photoelectric properties. Micromachines, 11, 189(2020).

    [9] J Li, Z Chen, H Yang et al. Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using Au nanocubes. Nanomaterials, 10, 257(2020).

    [10] Y Wang, Z Chen, D Xu et al. Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays. Results Phys., 16, 102951(2020).

    [11] F Qin, Z Chen, X Chen et al. A tunable triple-band near-infrared metamaterial absorber based on Au nano-cuboids array. Nanomaterials, 10, 207(2020).

    [12] S M Kamali, E Arbabi, A Arbabi et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).

    [13] P Qiao, W Yang, C J Chang-Hasnain. Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals. Adv. Opt. Photonics, 10, 180-245(2018).

    [14] H Zuo, W Yang, J Zhang et al. Focal shift of silicon microlens array in mid-infrared regime. J. Infrared Millim. Waves, 36, 149-153(2017).

    [15] Y Tian, Z Tan, X Han et al. Phononic crystal lens with an asymmetric scatterer. J. Phys. D: Appl. Phys., 52, 025102(2018).

    [16] J Xie, J Wang, R Ge et al. Multiband super-resolution imaging of graded-index photonic crystal flat lens. J. Phys. D: Appl. Phys., 51, 205103(2018).

    [17] T Zhou, W Tan, B Yan et al. Sub-wavelength focusing in the visible wavelength range realized by a one-dimensional ternary photonic crystal plano-concave lens. Superlattice. Microst, 124, 176-184(2018).

    [18] S Liang, J Xie, P Tang et al. Large object distance and super-resolution graded-index photonic crystal flat lens. Opt. Express, 27, 9601-9609(2019).

    [19] Y Cen, J Xie, J Liu. Multi-band imaging and focusing of photonic crystal flat lens with scatterer-size gradient. Chin. Opt. Lett., 17, 080501(2019).

    [20] J Sheng, J Xie, J Liu. Multiple super-resolution imaging in the second band of gradient lattice spacing photonic crystal flat lens. Chin. Opt. Lett., 18, 120501(2020).

    [21] Z Feng, X Zhang, Y Wang et al. Negative refraction and imaging using 12-fold-symmetry quasicrystals. Phys. Rev. Lett., 94, 247402(2005).

    [22] X Zhang, Z Li, B Cheng et al. Non-near-field focus and imaging of an unpolarized electromagnetic wave through high-symmetry quasicrystals. Opt. Express, 15, 1292-1300(2007).

    [23] J Liu, E Liu, Z Fan. Width dependence of two-dimensional photonic quasicrystal flat lens imaging characteristics. J. Mod. Optic, 63, 692-696(2016).

    [24] J Liu, Z Fan. Size limits for focusing of two-dimensional photonic quasicrystal lenses. IEEE Photonic. Tech. L., 30, 1001-1004(2018).

    [25] W Tan, E Liu, B Yan et al. Subwavelength focusing of a cylindrically symmetric plano-concave lens based on a one-dimensional Thue-Morse photonic quasicrystal. Appl. Phys. Express, 11, 092002(2018).

    [26] W Zhang, W Tan, Q Yang et al. Subwavelength focusing in visible light band by a Fibonacci photonic quasi-crystal plano-concave lens. J. Opt. Soc. Am. B, 35, 2364-2367(2018).

    [27] H Zhao, J Xie, J Liu. An approximate theoretical explanation for super-resolution imaging of two-dimensional photonic quasi-crystal flat lens. Appl. Phys. Express, 13, 022007(2020).

    [28] Y Chan, C Chan, Z Liu. Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett., 80, 956-959(1998).

    [29] D G Shechtman, I A Blech, D Gratias et al. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 53, 1951-1953(1984).

    [30] X Y Xi, X H Sun. Photonic bandgap properties of two dimensional photonic quasicrystals with multiple complex structures. Superlattice. Microst, 129, 247-251(2019).

    [31] R B Capaz, B Koiller, S L A de Queiroz. Gap states and localization properties of one-dimensional Fibonacci quasicrystals. Phys. Rev. B, 42, 6402-6407(1990).

    [32] W Gellermann, M Kohmoto, B Sutherland et al. Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett., 72, 633-636(1994).

    [33] L Bian, P Liu, G Li. Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies. Superlattice. Microst, 98, 522-534(2016).

    [34] X Jiang, Y Zhang, S Feng et al. Photonic band gaps and localization in the Thue–Morse structures. Appl. Phys. Lett., 86, 201110(2005).

    [35] N Liu. Propagation of light waves in Thue-Morse dielectric multilayers. Phys. Rev. B, 55, 3543-3547(1997).

    [36] L Dal Negro, M Stolfi, Y Yi et al. Photon band gap properties and omnidirectional reflectance in Si∕ Si O2 Thue–Morse quasicrystals. Appl. Phys. Lett., 84, 5186-5188(2004).

    [37] Y Fang. Imaging by photonic crystal without negative refraction. Laser Phys. Lett., 2, 502-505(2005).

    [38] Y Fang, Z Ouyang. Realization of absolute negative refraction index by a photonic crystal using anisotropic dielectric material. Chin. Opt. Lett., 6, 57-60(2008).

    [39] B Yan, A Wang, E Liu et al. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber. J. Phys. D: Appl. Phys., 51, 155105(2018).

    [40] E Liu, B Yan, W Tan et al. Guiding characteristics of sunflower-type fiber. Superlattice. Microst, 115, 123-129(2018).

    [41] E Liu, W Tan, B Yan et al. Broadband ultra-flattened dispersion, ultra-low confinement loss and large effective mode area in an octagonal photonic quasi-crystal fiber. J. Opt. Soc. Am. A, 35, 431-436(2018).

    [42] J Han, E Liu, J Liu. Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss. J. Opt. Soc. Am. A, 36, 533-539(2019).

    [43] Q Liu, B Yan, J Liu. U-shaped photonic quasi-crystal fiber sensor with high sensitivity based on surface plasmon resonance. Appl. Phys. Express, 12, 052014(2019).

    [44] E Liu, S Liang, J Liu. Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber. Superlattice. Microst, 130, 61-67(2019).

    [45] E Liu, W Tan, B Yan et al. Robust transmission of orbital angular momentum mode based on a dual-cladding photonic quasi-crystal fiber. J. Phys. D Appl. Phys., 52, 325110(2019).

    [46] C Li, B Yan, J Liu. Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance. J. Opt. Soc. Am. A, 36, 1663-1668(2019).

    [47] Z Huo, E Liu, J Liu. Hollow-core photonic quasicrystal fiber with high birefringence and ultra-low nonlinearity. Chin. Opt. Lett., 18, 030603(2020).

    [48] J Liu, W Tan, E Liu et al. Planar scanning method for detecting refraction characteristics of two-dimensional photonic quasi-crystal wedge-shaped prisms. J. Opt. Soc. Am. A, 33, 978-983(2016).

    [49] Y Zhao, Z Wang, Z Jiang et al. Add-drop filter with compound structures of photonic crystal and photonic quasicrystal. J. Infrared Millim. Waves, 36, 342-348(2017).

    [50] J Ren, X H Sun, S Wang. A narrowband filter based on 2D 8-fold photonic quasicrystal. Superlattice. Microst, 116, 221-226(2018).

    [51] R Ge, J Xie, B Yan et al. Refractive index sensor with high sensitivity based on circular photonic crystal. J. Opt. Soc. Am. A, 35, 992-997(2018).

    [52] A Shi, R Ge, J Liu. Refractive index sensor based on photonic quasi-crystal with concentric ring microcavity. Superlattice. Microst, 133, 106198(2019).

    [53] B Feng, E Liu, Z Wang et al. Generation of terahertz hollow beams by a photonic quasi-crystal flat lens. Appl. Phys. Express, 9, 062003(2016).

    [54] B Yan, J Xie, E Liu et al. Topological edge state in the two-dimensional Stampfli-triangle photonic crystals. Phys. Rev. Applied, 12, 44004(2019).

    [55] E Arbabi, A Arbabi, S M Kamali et al. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 1-9(2018).

    [56] J Xie, S Liang, J Liu et al. Near‐zero‐sidelobe optical subwavelength asymmetric focusing lens with dual‐layer metasurfaces. Ann. Phys., 532, 2000035(2020).

    [57] C Zhang, Z Jiang, W Tan et al. Non-near-field sub-diffraction focusing in the visible wavelength range by a Fibonacci subwavelength circular grating. J. Opt. Soc. Am. A, 35, 1701-1704(2018).

    [58] A F Horadam. A generalized Fibonacci sequence. Amer. Math. Monthly, 68, 455-459(1961).

    [59] C Yue, W Tan, J Liu. Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal. Superlattice. Microst, 117, 252-259(2018).

    [60] T Yamashita, S Miki, H Terai et al. Low-filling-factor superconducting single photon detector with high system detection efficiency. Opt. Express, 21, 27177-27184(2013).

    Jia-wei GUO, Wei TAN, Jian-lan XIE, Jian-jun LIU. One-dimensional photonic quasi-crystal plano-V lens[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 589
    Download Citation