• Chinese Journal of Quantum Electronics
  • Vol. 34, Issue 1, 1 (2017)
Dewei WU*, Xiang LI, Chunyan YANG, and Qiang MIAO
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2017.01.001 Cite this Article
    WU Dewei, LI Xiang, YANG Chunyan, MIAO Qiang. Progress of dual-path quantum entanglement microwave signals based on superconducting Josephson junction[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 1 Copy Citation Text show less
    References

    [1] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement[J]. Rev. Mod. Phys., 2009, 81(2): 865-931.

    [2] Klimov P V, Falk A L, Christle D J, et al. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble[J]. Science Advances, 2015, 1(10): e1501015.

    [3] Braunstein S L, Loock P. Quantum information with continuous variables[J]. Rev. Mod. Phys., 2005, 7: 513.

    [4] Niemczyk T, Deppe F, Huebl H, et al. Circuit quantum electrodynamics in the ultra-strong coupling regime[J]. Nature Phys., 2010, 6: 772-776.

    [5] Kelly J, Barends R, Fowler A G, et al. State preservation by repetitive error detection in a superconducting quantum circuit[J]. Nature, 2015, 519: 66-69.

    [6] Nakamura Y, Yamamoto T. Microwave quantum photonics in superconducting circuits[J]. IEEE Photonics, 2012, 5(2): 0701406.

    [7] Pechal M, Huthmacher L, Eichler C, et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics[J]. Phys. Rev. X, 2014, 4(4): 041010.

    [8] Clarke J, Wilhelm F K. Superconducting quantum bits[J]. Nature, 2008, 453: 1031-1038.

    [9] Devoret M H, Girvin S, Schoelkopf R. Circuit-QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be [J]. Annalen der Physik, 2007, 1(10-11): 767-779.

    [11] Eichler C, Lang C, Fink J M, et al. Observation of entanglement between itinerant microwave photons and a superconducting qubit[J]. Phys. Rev. Lett., 2012, 109(24): 6380-6383.

    [12] Lang C, Eichler C, Steffen L, et al. Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies[J]. Nature Physics, 2013, 9(6): 345-348.

    [13] Fulop A, Kruckel C J, Castello D, et al. Triply resonant coherent four-wave mixing in silicon nitride microresonators[J]. Opt. Lett., 2015, 40(17): 4006-4009.

    [14] Flavius S, Ananda R, Michael H, et al. Three-wave mixing with three incoming waves: Signal-idler coherent attenuation and gain enhancement in a parametric amplifier[J]. Phys. Rev. Lett., 2013, 111(7): 073903.

    [15] Castellanos-Beltran M A, Irwin K D, Hilton G C, et al. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial[J]. Nature Phys., 2008, 4: 929-931.

    [16] Zagoskin A M, Il’ichev E, McCutcheon M W, et al. Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit[J]. Phys. Rev. Lett., 2008, 101: 253602.

    [17] Fedorov K G, Zhong L, Pogorzalek S, et al. Displacement of squeezed propagating microwave states[J]. Bulletin of the American Physical Society, 2016, 61(2): 6.

    [18] Mallet F, Castellanos-Beltran M A, Ku H S, et al. Quantum state tomography of an itinerant squeezed microwave field[J]. Phys. Rev. Lett., 2011, 106: 220502.

    [19] Menzel E P, Deppe F, Mariantoni M, et al. Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography[J]. Phys. Rev. Lett., 2010, 105(10): 100401.

    [21] Bozyigit D, Lang C, Steffen L, et al. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors[J]. Nature Physics, 2011, 7(2): 154-158.

    [22] Menzel E P, Candia R D, Deppe F, et al. Path entanglement of continuous-variable quantum microwaves[J]. Phys. Rev. Lett., 2012, 109(25): 250502.

    [23] Flurin E, Roch N, Mallet F, et al. Generating entangled microwave radiation over two transmission lines[J]. Phys. Rev. Lett., 2012, 109(18): 183901.

    [24] Yurke B, Kaminsky P G, Miller R E, et al. Observation of 4.2 K equilibrium-noise squeezing via a Josephson-parametric amplifier[J]. Phys. Rev. Lett., 1988, 60(9): 764-767.

    [25] Movshovich R, Yurke B, Kaminsky P G, et al. Observation of zero-point noise squeezing via a Josephson parametric amplifier[J]. Phys. Rev. Lett., 1988, 60(9): 764-767.

    [26] Yamamoto T, Inomata K, Watanabe M, et al. Flux-driven Josephson parametric amplifier[J]. Appl. Phys. Lett., 2008, 93: 042510.

    [27] Zhong L, Menzel E P, Candia R D, et al. Squeezing with a flux-driven Josephson parametric amplifier[J]. New J. Phys., 2013, 15: 125013.

    [28] Castellanos-Beltran M A, Lehnert K W. Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator[J]. Appl. Phys. Lett., 2007, 91: 083509.

    [29] Mutus J Y, White T C, Barends R, et al. Strong environmental coupling in a Josephson parametric amplifier[J]. Appl. Phys. Lett., 2014, 104(26): 263513.

    [30] Zhou X, Schmitt V, Bertet P, et al. High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID-array[J]. Phys. Rev. B, 2014, 89: 214517.

    [31] Bergeal N, Vijay R, Manucharyan V E, et al. Analog information processing at the quantum limit with a Josephson ring modulator[J]. Nature Physics, 2008, (4): 296-302.

    [32] Bergeal N, Schackert F, Metcalfe M, et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator[J]. Nature, 2010, 465: 64-69.

    [33] Abdo B, Kamal A, Devoret M. Non-degenerate, three-wave mixing with the Josephson ring modulator[J]. Phys. Rev. B, 2013, 87: 014508.

    [34] Roch N, Flurin E, Nguyen F, et al. Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit[J]. Phys. Rev. Lett., 2012, 108: 1-5.

    [35] Pillet J D, Flurin E, Mallet F, et al. A compact design for the Josephson mixer: The lumped element circuit[J]. Appl. Phys. Lett., 2015, 106: 222603.

    [36] Flurin E, Roch N, Pillet J D, et al. Superconducting quantum node for entanglement and storage of microwave radiation[J]. Phys. Rev. Lett., 2015, 114: 090503.

    [37] Li P B, Gao S Y, Li F L. Engineering two-mode entangled states between two superconducting resonators by dissipation[J]. Phys. Rev. A, 2012, 8(1): 012318.

    [38] Li P B, Gao S Y, Li F L. Robust continuous-variable entanglement of microwave photons with cavity electromechanics[J]. Phys. Rev. A, 2013, 88(4): 043802.

    [39] Homann E, Deppe F, Niemczyk T, et al. A superconducting 180° hybrid ring coupler for circuit quantum electrodynamics[J]. Appl. Phys. Lett., 2010, 97(22): 222508.

    [40] Kim M S, Son W, Buzek V, et al. Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement[J]. Phys. Rev. A, 2002, 65: 032323.

    [41] Mariantoni M, Menzel E P, et al. Planck spectroscopy and quantum noise of microwave beam splitters[J]. Phys. Rev. Lett., 2010, 105(13): 133601.

    [42] Eichler C, Bozyigit D, Lang C, et al. Observation of two-mode squeezing in the microwave frequency domain[J]. Phys. Rev. Lett., 2011, 107(11): 113601.

    [43] Shchukin E, Vogel W. Inseparability criteria for continuous bipartite quantum states[J]. Phys. Rev. Lett., 2005, 95: 230502.

    [44] Vidal G, Werner R F. Computable measure of entanglement[J]. Phys. Rev. A, 2002, 65: 032314.

    WU Dewei, LI Xiang, YANG Chunyan, MIAO Qiang. Progress of dual-path quantum entanglement microwave signals based on superconducting Josephson junction[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 1
    Download Citation