• Journal of Inorganic Materials
  • Vol. 36, Issue 3, 269 (2021)
Yuxing YAN1, Fan WANG1, Juexuan ZHANG2, and Fushao LI1
Author Affiliations
  • 11. College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
  • 22. College of Teacher Education, Qujing Normal University, Qujing 655011, China
  • show less
    DOI: 10.15541/jim20200070 Cite this Article
    Yuxing YAN, Fan WANG, Juexuan ZHANG, Fushao LI. First Principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Vacancy Defects[J]. Journal of Inorganic Materials, 2021, 36(3): 269 Copy Citation Text show less
    References

    [1] D HRENIAK, A SPEGHINI, M BETTINELLI et al. Spectroscopic investigations of nanostructured LiNbO3 doped with Eu3+. Journal of Luminescence, 119/120, 219-223(2006).

    [2] H FANG T, J HSIAO Y, S CHANG Y et al. Photoluminescent characterization of KNbO3:Eu3+. Materials Chemistry and Physics, 100, 418-422(2006).

    [3] Z XIAO X, B YAN. Hybrid precursors synthesis and optical properties of LnNbO4:Bi3+ blue phosphors and Bi3+ sensitizing of on Dy3+'s luminescence in YNbO4 matrix. Journal of Alloys and Compounds, 421, 252-257(2006).

    [4] C ZHANG Y, X YUE Z, L GUI Z et al. Effects of CaF2 addition on the microstructure and microwave dielectric properties of ZnNb2O6 ceramics. Ceramics International, 29, 555-559(2003).

    [5] A NGAMJARUROJANA, O KHAMMAN, R YIMNIRUN et al. Effect of calcination conditions on phase formation and paricle size of zinc niobate powers systhesized by solid-state reaction. Materials Letters, 60, 2867-2872(2006).

    [6] P XU D, Y LIU, Q ZHOU et al. Optical phonon behaviors of columbite ZnNb2O6 single crystal. Journal of Alloys and Compounds, 61, 694-699(2015).

    [7] R NEURGAONKAR R, K CORY W, R OLIVER J. Growth and ferrolectric properties of tungsten bronze Sr2-xCaxNaNb5O15 single crystals. Materials Research Bulletin, 223, 1459-1461(1988).

    [8] R NEURGAONKAR R, G NELSON J, R OLIVER J. Ferroelectric properitie of tungsten bronze M62+M24-Nb8O30 solid solutions system. Materials Research Bulletin, 27, 677-684(1992).

    [9] M WU W, J LIANG S, X DING Z et al. A new approach to the preparation of microcrystalline ZnNb2O6 photocatalysts via a water- soluble niobium-citrate-peroxo compound. Solid State Sciences, 13, 2019-2023(2011).

    [10] J ZHENG, H CHEN G, X CHEN et al. Dielectric properties and energy storage behaviors in ZnNb2O6-doped Sr0.97Nd0.02TiO3 ceramics. Journal of Matrials Science: Materials in Electronics, 27, 3759-3764(2016).

    [11] T WANG, Y WEI X, Y HU Q et al. Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Materials Science and Engineering B, 178, 1081-1086(2013).

    [12] C ZHANG Y, T LI L, X YUE Z et al. Effects of additives on microstructures and microwave dielectric properties of ZnNb2O6 ceramics. Materials Science and Engineering B, 99, 282-285(2003).

    [13] X YAN Y, F WANG, S LI F et al. First principle calculation of electronic structure and optical properties of ZnNb2-xTaxO6(x=0-2.0). Chinese Journal of Luminescence, 41, 38-47(2020).

    [14] A KORMANYOS, A THOMAS, N HUDA M et al. Solution combustion synthesis, characterization, and photoelectrochemistry of CuNb2O6 and ZnNb2O6 nanoparticles. The Journal of Physical Chemistry C, 120, 16024-16034(2016).

    [15] L Q, P LI G, N XU N et al. A first-principles study on magnetic properties of the intrinsic. Acta Physica Sinica, 66, 037101(2017).

    [16] B SHI L, P WANG Y. A study on native defects and magnetic properties in undoped rutile TiO2 using LDA and LDA+UOp+UTid methods. Journal of Magnetism and Magnetic Materials, 405, 1-8(2016).

    [17] Y KIN D, J HONG, R PARK Y et al. The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. Journal of Physics: Condensed Matter, 21, 1954051(2009).

    [18] M WARBURG, M BUSCHBAUM H. ZnTa2O6, ein neuer vertreter des tri-α-PbO2 typs (mit ergӓ enzenden daten über ZnNb2O6). Zeitschrift für Anorganische und Allgemeine Chemie, 508, 55-60(1984).

    [19] W ZHOU S, P PENG, Q CHEN W et al. Electronic structures and optical properties of Ce-doped anatase TiO2 with oxygen vacancy. Acta Physica Sinica, 68, 037101(2019).

    [20] D SEGALL M, P J D LINDAN, M J PROBER et al. First- principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14, 2717-2744(2002).

    [21] J HSIAO Y, T FANG H, W JI L. Synthesis and luminescent properties of ZnNb2O6 nanocrystals for solar cell. Materials Letters, 64, 2563-2565(2010).

    [22] M MAEDA, T YAMAMURA, T IKEDA. Dielectric characteristics of several complex oxide ceramics at microwave frequencies. Japanese Journal of Applied Physics, 26, 76-79(1987).

    [23] Q GAO X, Y GUO ZH, F ZHANG Y et al. The electronic structure and optical properties of Al-N codoped ZnO. Chinese Journal of Luminescence, 31, 509-514(2010).

    [24] L ZHANG L, T XIA, A LIU G et al. Electronic and optical properties of N-Pr co-doped anatase ZnO from first-principles. Acta Physica Sinica, 68, 017401(2019).

    [25] K MA W, J WU J, F ZHANG G et al. First-principle study of electronic structure and optical property of Cu/Co doped FeS2. Acta Optica Sinica, 36, 1016001(2016).

    [26] J LI, Y LIU T, A YAO H et al. First principles study on the property of O vacancy in LuPO4 crystal. Journal of Inorganic Materials, 34, 878-884(2019).

    [27] Z WANG, H ZHA X, Z WU et al. First-principles study on electronic and magnetic properties of Mn-doped strontium ferrite SrFe12O19. Journal of Inorganic Materials, 34, 1047-1054(2019).

    [28] Q YU Z, X WANG, A TIAN et al. Study on Ni-doped anatase by first principle method. Chinese Journal of Inorganic Chemistry, 33, 41-48(2017).

    [29] J FAN T, H YUAN J, Y YANG Y et al. First-principles calculations of the electronic structure and optical properties of Co-Y Co-doped ZnO. Chinese Journal of Inorganic Chemistry, 32, 1183-1189(2016).

    Yuxing YAN, Fan WANG, Juexuan ZHANG, Fushao LI. First Principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Vacancy Defects[J]. Journal of Inorganic Materials, 2021, 36(3): 269
    Download Citation