• Chinese Physics B
  • Vol. 29, Issue 10, (2020)
Yan Li, Ming Gao, Hong Lv, Li-Guo Wang, and Shen-He Ren
Author Affiliations
  • School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China
  • show less
    DOI: 10.1088/1674-1056/ab9de7 Cite this Article
    Yan Li, Ming Gao, Hong Lv, Li-Guo Wang, Shen-He Ren. Far-zone behaviors of scattering-induced statistical properties of partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam[J]. Chinese Physics B, 2020, 29(10): Copy Citation Text show less

    Abstract

    In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order Born approximation, the effects of the scattering angle θ, the source parameters (i.e., the pulse duration T0 and the temporal coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.
    $$ \begin{eqnarray}\begin{array}{lll} & & {{\boldsymbol{\varGamma }}}^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{t}_{1},{t}_{2})\\ & = & \left[\begin{array}{cc}{\varGamma }_{xx}^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{t}_{1},{t}_{2}) & {\varGamma }_{xy}^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{t}_{1},{t}_{2})\\ {\varGamma }_{yx}^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{t}_{1},{t}_{2}) & {\varGamma }_{yy}^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{t}_{1},{t}_{2})\end{array}\right],\end{array}\end{eqnarray}$$(1)

    View in Article

    (1)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {\varGamma }_{\alpha \beta }^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{t}_{1},{t}_{2})\\ & = & {A}_{\alpha }{A}_{\beta }{B}_{\alpha \beta }\exp \left[-\displaystyle \frac{{{\boldsymbol{\rho }}}_{1}^{2}+{{\boldsymbol{\rho }}}_{2}^{2}}{4{w}_{0}^{2}}-\displaystyle \frac{{({{\boldsymbol{\rho }}}_{1}-{{\boldsymbol{\rho }}}_{2})}^{2}}{2{\delta }_{\alpha \beta }^{2}}\right]\\ & & \times \exp \left[-\displaystyle \frac{{t}_{1}^{2}+{t}_{2}^{2}}{2{T}_{0}^{2}}-\displaystyle \frac{{({t}_{1}-{t}_{2})}^{2}}{2{T}_{c\alpha \beta }^{2}}\right]\exp [{\rm{i}}{\omega }_{0}({t}_{1}-{t}_{2})],\\ & & (\alpha,\beta =x,y),\end{array}\end{eqnarray}$$(2)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {W}_{\alpha \beta }^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \frac{1}{{(2\pi )}^{2}}\displaystyle \iint {\varGamma }_{\alpha \beta }^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{t}_{1},{t}_{2},)\\ & & \times \exp [-{\rm{i}}({\omega }_{1}{t}_{1}-{\omega }_{2}{t}_{2})]{\rm{d}}{t}_{1}{\rm{d}}{t}_{2},\end{array}\end{eqnarray}$$(3)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {{\boldsymbol{W }}}^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{\omega }_{1},{\omega }_{2})\\ & = & \left[\begin{array}{cc}{W}_{xx}^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{\omega }_{1},{\omega }_{2}) & {W}_{xy}^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{\omega }_{1},{\omega }_{2})\\ {W}_{yx}^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{\omega }_{1},{\omega }_{2}) & {W}_{yy}^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{\omega }_{1},{\omega }_{2})\end{array}\right],\end{array}\end{eqnarray}$$(4)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {W}_{\alpha \beta }^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \frac{{A}_{\alpha }{A}_{\beta }{B}_{\alpha \beta }{T}_{0}}{2\pi {\Omega }_{0\alpha \beta }}\exp \left[-\displaystyle \frac{{{\boldsymbol{\rho }}}_{1}^{2}+{{\boldsymbol{\rho }}}_{2}^{2}}{4{w}_{0}^{2}}-\displaystyle \frac{{({{\boldsymbol{\rho }}}_{1}-{{\boldsymbol{\rho }}}_{2})}^{2}}{2{\delta }_{\alpha \beta }^{2}}\right]\\ & & \times \exp [-{T}_{\alpha \beta }({\omega }_{1},{\omega }_{2})],\end{array}\end{eqnarray}$$(5)

    View in Article

    $$ \begin{eqnarray}{T}_{\alpha \beta }({\omega }_{1},{\omega }_{2})=\displaystyle \frac{{({\omega }_{1}-{\omega }_{0})}^{2}+{({\omega }_{2}-{\omega }_{0})}^{2}}{2{\varOmega }_{0\alpha \beta }^{2}}+\displaystyle \frac{{({\omega }_{1}-{\omega }_{2})}^{2}}{2{\varOmega }_{c\alpha \beta }^{2}},\end{eqnarray}$$(6)

    View in Article

    (1)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}{S}_{0}({\boldsymbol{\rho }},\omega ) & = & {\rm{Tr}}\left[{{\boldsymbol{W}}}^{(0)}({\boldsymbol{\rho }},{\boldsymbol{\rho }},\omega,\omega )\right]\\ & = & \displaystyle \frac{{A}_{x}^{2}{B}_{xx}{T}_{0}}{2\pi {\varOmega }_{0xx}}\exp \left[-\displaystyle \frac{{{\boldsymbol{\rho }}}^{2}}{2{w}_{0}^{2}}-\displaystyle \frac{{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0xx}^{2}}\right]\\ & & +\displaystyle \frac{{A}_{y}^{2}{B}_{yy}{T}_{0}}{2\pi {\varOmega }_{0yy}}\exp \left[-\displaystyle \frac{{{\boldsymbol{\rho }}}^{2}}{2{w}_{0}^{2}}-\displaystyle \frac{{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0yy}^{2}}\right],\end{array}\end{eqnarray}$$(7)

    View in Article

    $$ \begin{eqnarray}{P}_{0}({\boldsymbol{\rho }},\omega )=\sqrt{1-\displaystyle \frac{4{\rm{Det}}{{\boldsymbol{W}}}^{(0)}({\boldsymbol{\rho }},{\boldsymbol{\rho }},\omega,\omega )}{{{\rm{Tr}}}^{2}{{\boldsymbol{W}}}^{(0)}({\boldsymbol{\rho }},{\boldsymbol{\rho }},\omega,\omega )}}.\end{eqnarray}$$(8)

    View in Article

    $$ \begin{eqnarray}{P}_{0}({\boldsymbol{\rho }},\omega )=\left|\displaystyle \frac{\displaystyle \frac{{A}_{x}^{2}{B}_{xx}}{{\varOmega }_{0xx}}\exp \left[-\displaystyle \frac{{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0xx}^{2}}\right]-\displaystyle \frac{{A}_{y}^{2}{B}_{yy}}{{\varOmega }_{0yy}}\exp \left[-\displaystyle \frac{{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0yy}^{2}}\right]}{\displaystyle \frac{{A}_{x}^{2}{B}_{xx}}{{\varOmega }_{0xx}}\exp \left[-\displaystyle \frac{{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0xx}^{2}}\right]+\displaystyle \frac{{A}_{y}^{2}{B}_{yy}}{{\varOmega }_{0yy}}\exp \left[-\displaystyle \frac{{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0yy}^{2}}\right]}\right|;\end{eqnarray}$$(9)

    View in Article

    $$ \begin{eqnarray}{P}_{0}({\boldsymbol{\rho }},\omega )=\displaystyle \frac{\sqrt{{p}_{2}^{2}(\omega )+4{p}_{3}^{2}(\omega )}}{{p}_{1}(\omega )},\end{eqnarray}$$(10)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}{p}_{1}(\omega ) & = & \displaystyle \frac{{A}_{x}^{2}{B}_{xx}}{{\varOmega }_{0xx}}\exp \left[-\displaystyle \frac{{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0xx}^{2}}\right]\\ & & +\displaystyle \frac{{A}_{y}^{2}{B}_{yy}}{{\varOmega }_{0yy}}\exp \left[-\displaystyle \frac{{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0yy}^{2}}\right],\\ {p}_{2}(\omega ) & = & \displaystyle \frac{{A}_{x}^{2}{B}_{xx}}{{\varOmega }_{0xx}}\exp \left[-\displaystyle \frac{{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0xx}^{2}}\right]\\ & & -\displaystyle \frac{{A}_{y}^{2}{B}_{yy}}{{\varOmega }_{0yy}}\exp \left[-\displaystyle \frac{{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0yy}^{2}}\right],\\ {p}_{3}^{2}(\omega ) & = & \displaystyle \frac{{A}_{x}^{2}{A}_{y}^{2}{|{B}_{xy}|}^{2}}{{\varOmega }_{0xy}^{2}}\exp \left[-\displaystyle \frac{2{(\omega -{\omega }_{0})}^{2}}{{\varOmega }_{0xy}^{2}}\right],\end{array}\end{eqnarray}$$(11)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & \mu ({\boldsymbol{\rho }},{\boldsymbol{\rho }},{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \frac{\sqrt{{\rm{Tr}}[{{\boldsymbol{W}}}^{(0)}({\boldsymbol{\rho }},{\boldsymbol{\rho }},{\omega }_{1},{\omega }_{2}){{\boldsymbol{W}}}^{(0)\ast }({\boldsymbol{\rho }},{\boldsymbol{\rho }},{\omega }_{1},{\omega }_{2})]}}{\sqrt{{\boldsymbol{S}}({\boldsymbol{\rho }},{\omega }_{1}){\boldsymbol{S}}({\boldsymbol{\rho }},{\omega }_{2})}}.\end{array}\end{eqnarray}$$(12)

    View in Article

    $$ \begin{eqnarray}{{\boldsymbol{W}}}^{(i)}({{\boldsymbol{r}}}_{1},{{\boldsymbol{r}}}_{2},{{\boldsymbol{s}}}_{01},{{\boldsymbol{s}}}_{02},{\omega }_{1},{\omega }_{2})=\left[\begin{array}{cc}{W}_{xx}({{\boldsymbol{r}}}_{1},{{\boldsymbol{r}}}_{2},{{\boldsymbol{s}}}_{01},{{\boldsymbol{s}}}_{02},{\omega }_{1},{\omega }_{2}) & \,\,\,{W}_{xy}({{\boldsymbol{r}}}_{1},{{\boldsymbol{r}}}_{2},{{\boldsymbol{s}}}_{01},{{\boldsymbol{s}}}_{02},{\omega }_{1},{\omega }_{2})\\ {W}_{yx}({{\boldsymbol{r}}}_{1},{{\boldsymbol{r}}}_{2},{{\boldsymbol{s}}}_{01},{{\boldsymbol{s}}}_{02},{\omega }_{1},{\omega }_{2}) & \,\,\,{W}_{yy}({{\boldsymbol{r}}}_{1},{{\boldsymbol{r}}}_{2},{{\boldsymbol{s}}}_{01},{{\boldsymbol{s}}}_{02},{\omega }_{1},{\omega }_{2})\end{array}\right],\end{eqnarray}$$(13)

    View in Article

    $$ $\begin{array}{lll}{W}_{\alpha \beta }^{(i)}({{\boldsymbol{r}}}_{1},{{\boldsymbol{r}}}_{2},{{\boldsymbol{s}}}_{01},{{\boldsymbol{s}}}_{02},{\omega }_{1},{\omega }_{2}) & = & \displaystyle \mathop{\iint }\limits_{|{{\boldsymbol{s}}}_{01\perp }{|}^{2}\le 1}\,\,\displaystyle \mathop{\iint }\limits_{|{{\boldsymbol{s}}}_{02\perp }{|}^{2}\le 1}{{\rm{d}}}^{2}{{\boldsymbol{s}}}_{01\perp }{{\rm{d}}}^{2}{{\boldsymbol{s}}}_{02\perp }{A}_{\alpha \beta }({{\boldsymbol{s}}}_{01\perp },{{\boldsymbol{s}}}_{02\perp },{\omega }_{1},{\omega }_{2})\exp [-{\rm{i}}({k}_{1}{{\boldsymbol{s}}}_{01}\cdot {{\boldsymbol{r}}}_{1}-{k}_{2}{{\boldsymbol{s}}}_{02}\cdot {{\boldsymbol{r}}}_{2})],\,\,\,\end{array}$$$(14)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {A}_{\alpha \beta }({{\boldsymbol{s}}}_{01\perp },{{\boldsymbol{s}}}_{02\perp },{\omega }_{1},{\omega }_{2})\\ & = & {\left(\displaystyle \frac{{k}_{1}{k}_{2}}{4{\pi }^{2}}\right)}^{2}{\displaystyle \iint }_{-\infty }^{\infty }{{\rm{d}}}^{2}{{\boldsymbol{\rho }}}_{1}{{\rm{d}}}^{2}{{\boldsymbol{\rho }}}_{2}{W}_{\alpha \beta }^{(0)}({{\boldsymbol{\rho }}}_{1},{{\boldsymbol{\rho }}}_{2},{\omega }_{1},{\omega }_{2})\\ & & \times \exp [-{\rm{i}}({k}_{2}{{\boldsymbol{s}}}_{02\perp }\cdot {{\boldsymbol{\rho }}}_{2}-{k}_{1}{{\boldsymbol{s}}}_{01\perp }\cdot {{\boldsymbol{\rho }}}_{1})].\end{array}\end{eqnarray}$$(15)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {A}_{\alpha \beta }({{\boldsymbol{s}}}_{01\perp },{{\boldsymbol{s}}}_{02\perp },{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \frac{{A}_{\alpha }{A}_{\beta }{B}_{\alpha \beta }{T}_{0}}{2\pi {\varOmega }_{0\alpha \beta }}{\left(\displaystyle \frac{{k}_{1}{k}_{2}}{2\pi }\right)}^{2}{w}_{0}^{2}{\sigma }_{\alpha \beta }^{2}\exp [-{T}_{\alpha \beta }({\omega }_{1},{\omega }_{2})]\\ & & \times \exp \left[-\displaystyle \frac{{w}_{0}^{2}{({k}_{1}{{\boldsymbol{s}}}_{01\perp }-{k}_{2}{{\boldsymbol{s}}}_{02\perp })}^{2}}{2}\right.\\ & & \left.-\displaystyle \frac{{\sigma }_{\alpha \beta }^{2}{({k}_{1}{{\boldsymbol{s}}}_{01\perp }+{k}_{2}{{\boldsymbol{s}}}_{02\perp })}^{2}}{8}\right],\end{array}\end{eqnarray}$$(16)

    View in Article

    $$ \begin{eqnarray}\displaystyle \frac{1}{{\sigma }_{\alpha \beta }^{2}}=\displaystyle \frac{1}{4{w}_{0}^{2}}+\displaystyle \frac{1}{{\delta }_{\alpha \beta }^{2}}.\end{eqnarray}$$(17)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {{\boldsymbol{E}}}^{(s)}(r{\boldsymbol{s}},\omega )\\ & = & -{\boldsymbol{s}}\times \left[{\boldsymbol{s}}\times \displaystyle \mathop{\int }\limits_{D}F({{\boldsymbol{r}}}^{\prime},\omega ){{\boldsymbol{E}}}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )G(r{\boldsymbol{s}},{{\boldsymbol{r}}}^{\prime},\omega ){{\rm{d}}}^{3}{{\boldsymbol{r}}}^{\prime}\right],\end{array}\end{eqnarray}$$(18)

    View in Article

    $$ \begin{eqnarray}G(r{\boldsymbol{s}},{{\boldsymbol{r}}}^{\prime},\omega )=\displaystyle \frac{\exp ({\rm{i}}kr)}{r}\exp [-{\rm{i}}k{\boldsymbol{s}}\cdot {{\boldsymbol{r}}}^{\prime}].\end{eqnarray}$$(19)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {E}_{x}^{(s)}(r{\boldsymbol{s}},\omega )=\displaystyle {\int }_{D}F({{\boldsymbol{r}}}^{\prime},\omega )G(r{\boldsymbol{s}},{{\boldsymbol{r}}}^{\prime},\omega )\left[(1-{s}_{x}^{2}){E}_{x}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )-{s}_{x}{s}_{y}{E}_{y}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )\right]{{\rm{d}}}^{3}{{\boldsymbol{r}}}^{\prime},\end{array}\end{eqnarray}$$(20a)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {E}_{y}^{(s)}(r{\boldsymbol{s}},\omega )=\displaystyle {\int }_{D}F({{\boldsymbol{r}}}^{\prime},\omega )G(r{\boldsymbol{s}},{{\boldsymbol{r}}}^{\prime},\omega )\left[-{s}_{x}{s}_{y}{E}_{x}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )-(1-{s}_{y}^{2}){E}_{y}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )\right]{{\rm{d}}}^{3}{{\boldsymbol{r}}}^{\prime},\end{array}\end{eqnarray}$$(20b)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {E}_{z}^{(s)}(r{\boldsymbol{s}},\omega )=\displaystyle {\int }_{D}F({{\boldsymbol{r}}}^{\prime},\omega )G(r{\boldsymbol{s}},{{\boldsymbol{r}}}^{\prime},\omega )\left[-{s}_{x}{s}_{z}{E}_{x}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )-{s}_{y}{s}_{z}{E}_{y}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )\right]{{\rm{d}}}^{3}{{\boldsymbol{r}}}^{\prime},\end{array}\end{eqnarray}$$(20c)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}{E}_{\theta }^{(s)}(r{\boldsymbol{s}},\omega ) & = & {\rm{\cos }}\theta \cos \varphi {E}_{x}^{(s)}(r{\boldsymbol{s}},\omega )+\cos \theta \sin \varphi {E}_{y}^{(s)}(r{\boldsymbol{s}},\omega )\\ & & -\sin \theta {E}_{z}^{(s)}(r{\boldsymbol{s}},\omega ),\end{array}\end{eqnarray}$$(21a)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}{E}_{\varphi }^{(s)}(r{\boldsymbol{s}},\omega ) & = & -\sin \varphi {E}_{x}^{(s)}(r{\boldsymbol{s}},\omega )+\cos \varphi {E}_{y}^{(s)}(r{\boldsymbol{s}},\omega ),\end{array}\end{eqnarray}$$(21b)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}{E}_{\theta }^{(s)}(r{\boldsymbol{s}},\omega ) & = & \displaystyle {\int }_{D}{{\rm{d}}}^{3}{{\boldsymbol{r}}}^{\prime}F({{\boldsymbol{r}}}^{\prime},\omega )G(r{\boldsymbol{s}},{{\boldsymbol{r}}}^{\prime},\omega )\\ & & \times [{\rm{\cos }}\theta \cos \varphi {E}_{x}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )\\ & & +{\rm{\cos }}\theta \sin \varphi {E}_{y}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )],\end{array}\end{eqnarray}$$(22a)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}{E}_{\varphi }^{(s)}(r{\boldsymbol{s}},\omega ) & = & \displaystyle {\int }_{D}F({{\boldsymbol{r}}}^{\prime},\omega )G(r{\boldsymbol{s}},{{\boldsymbol{r}}}^{\prime},\omega )\\ & & \times [-\sin \varphi {E}_{x}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )\\ & & +{\rm{\cos }}\varphi {E}_{y}^{(i)}({{\boldsymbol{r}}}^{\prime},{{\boldsymbol{s}}}_{0},\omega )]{{\rm{d}}}^{3}{{\boldsymbol{r}}}^{\prime},\end{array}\end{eqnarray}$$(22b)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {{\boldsymbol{W}}}^{(s)}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & = & [{W}_{\alpha \beta }^{(s)}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})]\\ & = & [\langle {E}_{\alpha }^{(s)\ast }(r{{\boldsymbol{s}}}_{1},{\omega }_{1}\rangle )\langle {E}_{\beta }^{(s)}(r{{\boldsymbol{s}}}_{2},{\omega }_{2})\rangle ],\\ & & \,\,(\alpha,\beta =\theta,\varphi ).\,\,\,\,\end{array}\end{eqnarray}$$(23)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} \quad {W}_{\theta \theta }^{(s)}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ = \displaystyle \frac{{{\rm{e}}}^{[-{\rm{i}}({k}_{1}-{k}_{2})r]}}{{r}^{2}}[\cos {\theta }_{1}\cos {\varphi }_{1}\cos {\theta }_{2}\cos {\varphi }_{2}{F}_{xx}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ \quad +\cos {\theta }_{1}\cos {\varphi }_{1}\cos {\theta }_{2}\sin {\varphi }_{2}{F}_{xy}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ \quad +\cos {\theta }_{1}\sin {\varphi }_{1}\cos {\theta }_{2}\cos {\varphi }_{2}{F}_{yx}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ \quad +\cos {\theta }_{1}\sin {\varphi }_{1}\cos {\theta }_{2}\sin {\varphi }_{2}{F}_{yy}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})],\\ \end{array}\end{eqnarray}$$(24a)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {W}_{\theta \varphi }^{(s)}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \frac{{{\rm{e}}}^{[-{\rm{i}}({k}_{1}-{k}_{2})r]}}{{r}^{2}}[-\cos {\theta }_{1}\cos {\varphi }_{1}\sin {\varphi }_{2}{F}_{xx}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & & +\cos {\theta }_{1}\cos {\varphi }_{1}\cos {\varphi }_{2}{F}_{xy}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & & -\cos {\theta }_{1}\sin {\varphi }_{1}\sin {\varphi }_{2}{F}_{yx}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & & +\cos {\theta }_{1}\sin {\varphi }_{1}\cos {\varphi }_{2}{F}_{yy}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})],\end{array}\end{eqnarray}$$(24b)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {W}_{\varphi \theta }^{(s)}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \frac{{{\rm{e}}}^{[-{\rm{i}}({k}_{1}-{k}_{2})r]}}{{r}^{2}}[-\sin {\varphi }_{1}\cos {\theta }_{2}\cos {\varphi }_{2}{F}_{xx}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & & -\sin {\varphi }_{1}\cos {\theta }_{2}\sin {\varphi }_{2}{F}_{xy}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & & +\cos {\varphi }_{1}\cos {\theta }_{2}\cos {\varphi }_{2}{F}_{yx}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & & +\cos {\varphi }_{1}\cos {\theta }_{2}\sin {\varphi }_{2}{F}_{yy}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})],\end{array}\end{eqnarray}$$(24c)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}\quad {W}_{\varphi \varphi }^{(s)}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ =\displaystyle \frac{{{\rm{e}}}^{[-{\rm{i}}({k}_{1}-{k}_{2})r]}}{{r}^{2}}[\sin {\varphi }_{1}\sin {\varphi }_{2}{F}_{xx}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ \quad -\sin {\varphi }_{1}\cos {\varphi }_{2}{F}_{xy}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ \quad -\cos {\varphi }_{1}\sin {\varphi }_{2}{F}_{yx}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ \quad +\cos {\varphi }_{1}\cos {\varphi }_{2}{F}_{yy}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})].\end{array}\end{eqnarray}$$(24d)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {F}_{\alpha \beta }(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \mathop{\iint }\limits_{|{{\boldsymbol{s}}}_{01\perp }{|}^{2}\le 1}\,\,\displaystyle \mathop{\iint }\limits_{|{{\boldsymbol{s}}}_{01\perp }{|}^{2}\le 1}{\mathop{F}\limits^{\sim }}^{\ast }({{\boldsymbol{K}}}_{1},{\omega }_{1})\mathop{F}\limits^{\sim }({{\boldsymbol{K}}}_{2},{\omega }_{2})\\ & & \times {A}_{\alpha \beta }({{\boldsymbol{s}}}_{01\perp },{{\boldsymbol{s}}}_{02\perp },{\omega }_{1},{\omega }_{2}){{\rm{d}}}^{3}{{\boldsymbol{s}}}_{01\perp }{{\rm{d}}}^{3}{{\boldsymbol{s}}}_{02\perp },\\ & & (\alpha,\beta =x,y),\,\,\,\,\,\,\,\end{array}\end{eqnarray}$$(25)

    View in Article

    $$ \begin{eqnarray}\mathop{F}\limits^{\sim }({\boldsymbol{K}},\omega )=\displaystyle {\int }_{D}F({{\boldsymbol{r}}}^{\prime},\omega )\exp [-{\rm{i}}{\boldsymbol{K}}\cdot {{\boldsymbol{r}}}^{\prime}]{{\rm{d}}}^{3}{{\boldsymbol{r}}}^{\prime}\end{eqnarray}$$(26)

    View in Article

    $$ \begin{eqnarray}F({{\boldsymbol{r}}}^{\prime},\omega )=\left\{\begin{array}{ll}\displaystyle \frac{{k}^{2}}{4\pi }[{n}^{2}({{\boldsymbol{r}}}^{\prime},\omega )-1], & \,\,{{\boldsymbol{r}}}^{\prime}\in D,\\ 0, & \,\,{\rm{otherwise}}.\end{array}\right.\end{eqnarray}$$(27)

    View in Article

    $$ \begin{eqnarray}F({{\boldsymbol{r}}}^{\prime},\omega )={F}_{0}{\rm{\exp }}\left[-\displaystyle \frac{{{\boldsymbol{r}}}^{\prime}{}^{2}}{2{\sigma }_{R}^{2}}\right],\end{eqnarray}$$(28)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {\mathop{F}\limits^{\sim }}^{\ast }({{\boldsymbol{K}}}_{1},{\omega }_{1})\mathop{F}\limits^{\sim }({{\boldsymbol{K}}}_{2},{\omega }_{2})\\ & = & \displaystyle {\int }_{D}\displaystyle {\int }_{D}{F}^{\ast }({{\boldsymbol{r}}}^{\prime}{}_{1},{\omega }_{1})F({{\boldsymbol{r}}}^{\prime}{}_{2},{\omega }_{2})\\ & & \times \exp [{\rm{i}}({{\boldsymbol{K}}}_{1}\cdot {{\boldsymbol{r}}}^{\prime}{}_{1}-{{\boldsymbol{K}}}_{2}\cdot {{\boldsymbol{r}}}^{\prime}{}_{2})]{{\rm{d}}}^{3}{{\boldsymbol{r}}}^{\prime}{}_{1}{{\rm{d}}}^{3}{{\boldsymbol{r}}}^{\prime}{}_{2}\\ & = & {F}_{0}^{2}{(2\pi )}^{3}{\sigma }_{R}^{6}\exp \left[-\displaystyle \frac{{\sigma }_{R}^{2}}{2}({{\boldsymbol{K}}}_{1}^{2}+{{\boldsymbol{K}}}_{2}^{2})\right].\end{array}\end{eqnarray}$$(29)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {F}_{\alpha \beta }(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \frac{{k}_{1}^{2}{k}_{2}^{2}{A}_{\alpha }{A}_{\beta }{B}_{\alpha \beta }{T}_{0}{F}_{0}^{2}{\sigma }_{R}^{6}{w}_{0}^{2}{\sigma }_{\alpha \beta }^{2}}{{\varOmega }_{0\alpha \beta }}\exp [-{T}_{\alpha \beta }({\omega }_{1},{\omega }_{2})]\\ & & \times \displaystyle \mathop{\iint }\limits_{{p}_{1}^{2}+{q}_{1}^{2}\le 1}\,\,\displaystyle \mathop{\iint }\limits_{{p}_{2}^{2}+{q}_{2}^{2}\le 1}\exp \left\{-\displaystyle \frac{{\sigma }_{R}^{2}{k}_{1}^{2}}{2}{({s}_{1x}-{p}_{1})}^{2}+{({s}_{1y}-{q}_{1})}^{2}+{\left({s}_{1z}-\sqrt{1-{p}_{1}^{2}-{q}_{1}^{2}}\right)}^{2}\right\}\\ & & \times \exp \left\{-\displaystyle \frac{{\sigma }_{R}^{2}{k}_{2}^{2}}{2}{({s}_{2x}-{p}_{2})}^{2}+{({s}_{2y}-{q}_{2})}^{2}+{\left({s}_{2z}-\sqrt{1-{p}_{2}^{2}-{q}_{2}^{2}}\right)}^{2}\right\}\\ & & \times \exp \left\{-\displaystyle \frac{{w}_{0}^{2}}{2}[{k}_{1}^{2}({p}_{1}^{2}+{q}_{1}^{2})-2{k}_{1}{k}_{2}({p}_{1}{p}_{2}+{q}_{1}{q}_{2})+{k}_{2}^{2}({p}_{2}^{2}+{q}_{2}^{2})]\right\}\\ & & \times \exp \left\{-\displaystyle \frac{{\sigma }_{\alpha \beta }^{2}}{8}[{k}_{1}^{2}({p}_{1}^{2}+{q}_{1}^{2})+2{k}_{1}{k}_{2}({p}_{1}{p}_{2}+{q}_{1}{q}_{2})+{k}_{2}^{2}({p}_{2}^{2}+{q}_{2}^{2})]\right\}{\rm{d}}{p}_{1}{\rm{d}}{q}_{1}{\rm{d}}{p}_{2}{\rm{d}}{q}_{2},\,\,\,(\alpha,\beta =x,y),\end{array}\end{eqnarray}$$(30)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {F}_{\alpha \beta }(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \frac{{k}_{1}^{2}{k}_{2}^{2}{A}_{\alpha }{A}_{\beta }{B}_{\alpha \beta }{T}_{0}{F}_{0}^{2}{\sigma }_{R}^{6}{w}_{0}^{2}{\sigma }_{\alpha \beta }^{2}}{{\varOmega }_{0\alpha \beta }}\exp \left[-{T}_{\alpha \beta }({\omega }_{1},{\omega }_{2})\right]\\ & & \times \displaystyle \frac{{\pi }^{2}}{{m}_{2\alpha \beta }{n}_{\alpha \beta }}\exp \left[\displaystyle \frac{{k}_{2}^{2}{\sigma }_{R}^{4}({s}_{2x}^{2}+{s}_{2y}^{2})}{4{m}_{2\alpha \beta }}+\displaystyle \frac{{\xi }_{x\alpha \beta }^{2}+{\xi }_{y\alpha \beta }^{2}}{4{n}_{\alpha \beta }}\right]\\ & & \times \exp \{-{\sigma }_{R}^{2}[{k}_{1}^{2}(1-{s}_{1z})+{k}_{2}^{2}(1-{s}_{2z})]\},\\ & & (\alpha,\beta =x,y),\end{array}\end{eqnarray}$$(31)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {a}_{\alpha \beta }=\displaystyle \frac{{w}_{0}^{2}}{2}+\displaystyle \frac{{\sigma }_{\alpha \beta }^{2}}{8},\,\,\,{b}_{\alpha \beta }=\displaystyle \frac{{w}_{0}^{2}}{2}-\displaystyle \frac{{\sigma }_{\alpha \beta }^{2}}{8},\\ & & {m}_{j\alpha \beta }={k}_{j}^{2}{a}_{\alpha \beta }+{k}_{j}^{2}\displaystyle \frac{{\sigma }_{R}^{2}}{2}{s}_{jz}\,\,\,(j=1,2),\\ & & {n}_{\alpha \beta }={m}_{1\alpha \beta }-\displaystyle \frac{{k}_{1}^{2}{k}_{2}^{2}{b}_{\alpha \beta }^{2}}{{m}_{2\alpha \beta }},\\ & & {\xi }_{x\alpha \beta }={k}_{1}^{2}{\sigma }_{R}^{2}{s}_{1x}+\displaystyle \frac{{k}_{1}{k}_{2}^{3}{\sigma }_{R}^{2}{b}_{\alpha \beta }}{{m}_{2\alpha \beta }}{s}_{2x},\\ & & {\xi }_{y\alpha \beta }={k}_{1}^{2}{\sigma }_{R}^{2}{s}_{1y}+\displaystyle \frac{{k}_{1}{k}_{2}^{3}{\sigma }_{R}^{2}{b}_{\alpha \beta }}{{m}_{2\alpha \beta }}{s}_{2y}.\end{array}\end{eqnarray}$$(32)

    View in Article

    $$ \begin{eqnarray}S(r{\boldsymbol{s}},\omega )={W}_{\theta \theta }^{(s)}(r{\boldsymbol{s}},r{\boldsymbol{s}},\omega,\omega )+{W}_{\varphi \varphi }^{(s)}(r{\boldsymbol{s}},r{\boldsymbol{s}},\omega,\omega ),\end{eqnarray}$$(33)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}P(r{\boldsymbol{s}},\omega ) & = & \sqrt{1-\displaystyle \frac{4{\rm{Det}}{{\boldsymbol{W}}}^{(s)}(r{\boldsymbol{s}},r{\boldsymbol{s}},\omega,\omega )}{{{\rm{Tr}}}^{2}{{\boldsymbol{W}}}^{(s)}(r{\boldsymbol{s}},r{\boldsymbol{s}},\omega,\omega )}}\\ & = & \displaystyle \frac{\sqrt{{\left({W}_{\theta \theta }^{(s)}-{W}_{\varphi \varphi }^{(s)}\right)}^{2}+4{W}_{\theta \varphi }^{(s)}{W}_{\varphi \theta }^{(s)}}}{{W}_{\theta \theta }^{(s)}+{W}_{\varphi \varphi }^{(s)}},\end{array}\end{eqnarray}$$(34)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & \mu (r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \frac{\sqrt{{\rm{Tr}}[{{\boldsymbol{W}}}^{(s)}(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2}){{\boldsymbol{W}}}^{(s)\ast }(r{{\boldsymbol{s}}}_{1},r{{\boldsymbol{s}}}_{2},{\omega }_{1},{\omega }_{2})]}}{\sqrt{{\boldsymbol{S}}(r{{\boldsymbol{s}}}_{1},{\omega }_{1}){\boldsymbol{S}}(r{{\boldsymbol{s}}}_{2},{\omega }_{2})}}.\,\,\,\,\,\,\,\end{array}\end{eqnarray}$$(35)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {F}_{\alpha \beta }(r{\boldsymbol{s}},r{\boldsymbol{s}},{\omega }_{1},{\omega }_{2})\\ & = & \displaystyle \frac{{A}_{\alpha }{A}_{\beta }{B}_{\alpha \beta }{T}_{0}{F}_{0}^{2}{\sigma }_{R}^{6}{w}_{0}^{2}{\sigma }_{\alpha \beta }^{2}}{{\varOmega }_{0\alpha \beta }}\exp [-{T}_{\alpha \beta }({\omega }_{1},{\omega }_{2})]\\ & & \times \displaystyle \frac{{\pi }^{2}}{{m}_{\alpha \beta }{n}_{\alpha \beta }}\exp \left[\left(\displaystyle \frac{{\sigma }_{R}^{4}}{4{m}_{\alpha \beta }}+\displaystyle \frac{{\mu }_{\alpha \beta }^{2}}{4{n}_{\alpha \beta }}\right)({s}_{x}^{2}+{s}_{y}^{2})\right]\\ & & \times \exp [-{\sigma }_{R}^{2}({k}_{1}^{2}+{k}_{2}^{2})(1-{s}_{z})],\\ & & (\alpha,\beta =x,y),\end{array}\end{eqnarray}$$(36)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll} & & {a}_{\alpha \beta }=\displaystyle \frac{{w}_{0}^{2}}{2}+\displaystyle \frac{{\sigma }_{\alpha \beta }^{2}}{8},\,\,{b}_{\alpha \beta }=\displaystyle \frac{{w}_{0}^{2}}{2}-\displaystyle \frac{{\sigma }_{\alpha \beta }^{2}}{8},\\ & & {\mu }_{\alpha \beta }={k}_{1}^{2}{\sigma }_{R}^{2}+\displaystyle \frac{{k}_{1}{k}_{2}^{3}{\sigma }_{R}^{2}{b}_{\alpha \beta }}{{m}_{\alpha \beta }},\\ & & {m}_{\alpha \beta }={a}_{\alpha \beta }+\displaystyle \frac{{\sigma }_{R}^{2}}{2}{s}_{z},\,\,{n}_{\alpha \beta }={m}_{\alpha \beta }-\displaystyle \frac{{k}_{2}^{2}{b}_{\alpha \beta }^{2}}{{m}_{\alpha \beta }}.\end{array}\end{eqnarray}$$(37)

    View in Article

    $$ \begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{1}{4{w}_{0}^{2}}+\displaystyle \frac{1}{{\delta }_{\alpha \alpha }^{2}}\le \displaystyle \frac{2{\pi }^{2}}{{\lambda }^{2}},\,(\alpha =x,y),{\sigma }_{R}\gg \displaystyle \frac{{\lambda }_{0}}{\pi \sqrt{2}},\\ \max \left\{{\delta }_{xx},{\delta }_{yy}\right\}\le {\delta }_{xy}\le \min \left\{\displaystyle \frac{{\delta }_{xx}}{|{B}_{xy}|},\displaystyle \frac{{\delta }_{yy}}{|{B}_{xy}|}\right\},\\ \max \{{T}_{cxx},{T}_{cyy}\}\le {T}_{cxy}\le \min \{\displaystyle \frac{{T}_{cxx}}{|{B}_{xy}|},\displaystyle \frac{{T}_{cyy}}{|{B}_{xy}|}\}.\end{array}\right.\end{eqnarray}$$(38)

    View in Article

    $$ \begin{eqnarray}{{\boldsymbol{J}}}^{(s)}(r{\boldsymbol{s}},\omega )={{\boldsymbol{W}}}^{(s)}(r{\boldsymbol{s}},r{\boldsymbol{s}},\omega,\omega ).\end{eqnarray}$$(39)

    View in Article

    (1)

    View in Article

    $$ \begin{eqnarray}\begin{array}{lll}{P}^{2}(r{\boldsymbol{s}},\omega ) & = & 1-\displaystyle \frac{\det {{\boldsymbol{J}}}^{(s)}(r{\boldsymbol{s}},\omega )}{{{\rm{Tr}}}^{2}{{\boldsymbol{J}}}^{(s)}(r{\boldsymbol{s}},\omega )}\\ & = & 2\displaystyle \frac{{\rm{Tr}}{{\boldsymbol{J}}}^{(s)2}(r{\boldsymbol{s}},\omega )}{{{\rm{Tr}}}^{2}{{\boldsymbol{J}}}^{(s)}(r{\boldsymbol{s}},\omega )}-1.\,\,\,\end{array}\end{eqnarray}$$(40)

    View in Article

    $$ \begin{eqnarray}{P}^{2}(r{\boldsymbol{s}},\omega )=2{\mu }^{2}(r{\boldsymbol{s}},r{\boldsymbol{s}},\omega,\omega )-1.\end{eqnarray}$$(41)

    View in Article

    Yan Li, Ming Gao, Hong Lv, Li-Guo Wang, Shen-He Ren. Far-zone behaviors of scattering-induced statistical properties of partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam[J]. Chinese Physics B, 2020, 29(10):
    Download Citation