• Acta Optica Sinica
  • Vol. 26, Issue 2, 166 (2006)
[in Chinese]*, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Study of Soliton Pulse with Small Pedestal Based on Adiabatic Soliton Compression Effects[J]. Acta Optica Sinica, 2006, 26(2): 166 Copy Citation Text show less
    References

    [1] K. A. Ahmed, C. C. Kai, H. F. Liu et al.. Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression technique[J]. Selected Topics in Quant. Electron., 1995, 1(2): 592~600

    [2] J. W. Nicholson, A. D. Yablon, P. S. Westbrook et al.. High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation[J]. Opt. Exp., 2004, 12(13): 3025~3034

    [3] A. D. Ellis, D. M. Patrick. All laser diode compression of 5 GHz picosecond pulses using crossphase modulation in optical fiber[J]. Electron. Lett., 1993, 29(2): 149~150

    [4] Michael Spanner, Misha Yu. Ivanov, Vladimir Kalosha et al.. Tunable optimal compression of ultrabroadband pulses by cross-phase modulation[J]. Opt. Lett., 2003, 28(9): 749~751

    [5] S. V. Chernikov, D. J. Richardson, E. M. Dianov et al.. Picosecond soliton pulse compression based on dispersion decreasing fiber[J]. Electron. Lett., 1992, 28(13): 1842~1844

    [6] A. Mostofi, H. H. Hanza, P. L. Chu. Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers[J]. IEEE J. Quant. Electron., 1997, 33(4): 620~628

    [7] S. V. Chernikov, J. B. Taylor, R. Kashyap. Comblike dispersion-profiled fiber for soliton pulse train generation[J]. Opt. Lett., 1994, 19(8): 539~541

    [8] P.C. Reeves-Hall, J. R. Taylor. Wavelength and duration tunable sub-picosecond source using adiabatic Raman compression[J]. Electron. Lett., 2001, 37(7): 417~418

    [9] T. E. Murphy. 10-GHz 1.3-ps pulse generation using chirped soliton compression in a Raman gain medium[J]. IEEE Photon. Technol. Lett., 2002, 14(10): 1424~1426

    [10] K. Igarashi, H. Tobioka, S. Takasaka et al.. Duration-tunable 100-GHz sub-picosecond soliton train generation through adiabatic Raman amplification in conjunction with soliton reshaping[C]. OFC ′2003, 1: 155~156

    [11] T. Kogure, J. H. Lee, D. J. Richardson. Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification[J]. IEEE Photon. Technol. Lett., 2004, 16(4): 1167~1169

    [18] Bin Tan, Zhiyong Li, Zhaoying Wang et al.. Wavelength and duration tunable soliton generation from a regeneratively mode-locked fiber laser[J]. Chin. Opt. Lett., 2004, 2(10): 604~606

    CLP Journals

    [1] Cao Wenhua, Xu Ping, Liu Songhao. Soliton-Effect Pulse Compression in a Dispersion-Decreasing Fiber-Based Mach-Zehnder Interferometer[J]. Acta Optica Sinica, 2011, 31(4): 419001

    [2] Wang Lei, Yang Guangye, Ren Jinping, Luo Huanbo, Li Lu. Spectral Compression of Super-Gaussian Pulse by Dual Cosinoidal Phase Modulation[J]. Acta Optica Sinica, 2018, 38(3): 319001

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Study of Soliton Pulse with Small Pedestal Based on Adiabatic Soliton Compression Effects[J]. Acta Optica Sinica, 2006, 26(2): 166
    Download Citation