• Journal of Innovative Optical Health Sciences
  • Vol. 9, Issue 6, 1650024 (2016)
Xiaowei He1、*, Hongbo Guo1, Jingjing Yu2, Xu Zhang1, and Yuqing Hou1
Author Affiliations
  • 1Northwest University School of Information Sciences and Technology Xi'an, P. R. China 710069
  • 2Shaanxi Normal University School of Physics and Information Technology Xi'an, P. R. China 710062
  • show less
    DOI: 10.1142/s1793545816500243 Cite this Article
    Xiaowei He, Hongbo Guo, Jingjing Yu, Xu Zhang, Yuqing Hou. Effective and robust approach for fluorescence molecular tomography based on CoSaMP and SP3 model[J]. Journal of Innovative Optical Health Sciences, 2016, 9(6): 1650024 Copy Citation Text show less
    References

    [1] A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, V. Ntziachristos, "Fmt-xct: in vivo animal studies with hybrid fluorescence molecular tomography- x-ray computed tomography," Nat. Methods 9(6), 615–620 (2012).

    [2] J. K. Willmann, N. Van Bruggen, L. M. Dinkelborg, S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7(7), 591–607 (2008).

    [3] C. Darne, Y. Lu, E M. Sevick-Muraca, "Small animal fluorescence and bioluminescence tomography: A review of approaches, algorithms and technology update," Phys. Med. Biol. 59(1), R1–R64 (2014).

    [4] D. Wang, J. He, H. Qiao, X. Song, Y. Fan, D. Li, "High-performance fluorescence molecular tomography through shape-based reconstruction using spherical harmonics parameterization," PloS one 9(4), e94317 (2014).

    [5] N. Ducros, A. Bassi, G. Valentini, G. Canti, S. Arridge, C. D'Andrea, "Fluorescence molecular tomography of an animal model using structured light rotating view acquisition," J. Biomed. Opt. 18(2), 020503 (2013).

    [6] J. Ye, Y. Du, Y. An, C. Chi, J. Tian, "Reconstruction of fluorescence molecular tomography via a nonmonotone spectral projected gradient pursuit method," J. Biomed. Opt. 19(12), 126013 (2014).

    [7] V. Ntziachristos, J. Ripoll, L V. Wang, R. Weissleder, "Looking and listening to light: The evolution of whole-body photonic imaging," Nat. Biotech. 23(3), 313–320 (2005).

    [8] A. D. Klose, E. W. Larsen, "Light transport in biological tissue based on the simplified spherical harmonics equations," J. Comput. Phys. 220(1), 441–470 (2006).

    [9] H. Guo, Y. Hou, X. He, J. Yu, J. Cheng, X. Pu, "Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation," J. Innov. Opt. Health Sci. 7(02) 1350057 (2014).

    [10] D. Wang, X. Song, J. Bai, "Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution (Vol. 15, pg. 9722, 2007)," Opt. Express 15(15), 9722–9730 (2007).

    [11] J. C. Baritaux, K. Hassler, M. Unser, "An efficient numerical method for general regularization in fluorescence molecular tomography," IEEE Trans. Med. Imag. 29(4), 1075–1087 (2010).

    [12] Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, C. Chi, J. Tian. "A novel region reconstruction method for fluorescence molecular tomography," IEEE Trans. Biomed. Eng. 62(7), 1818–1826 (2015).

    [13] D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, X. Yang, "A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization," Opt. Express 18(8), 8630–8646 (2010).

    [14] J. Shi, F. Liu, H. Pu, S. Zuo, J. Luo, J. Bai, "An adaptive support driven reweighted l1-regularization algorithm for fluorescence molecular tomography," Biomed. Opt. Express 5(11), 4039– 4052 (2014).

    [15] H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, J. Liang, "Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography," Appl. Opt. 51(7), 975–986 (2012).

    [16] W. Xie, Y. Deng, K. Wang, X. Yang, Q. Luo, "Reweighted l1 regularization for restraining artifacts in FMT reconstruction images with limited measurements," Opt. Lett. 39(14), 4148–4151 (2014).

    [17] D. Zhu, C. Li, "Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement," Phys. Med. Biol. 59(12), 2901 (2014).

    [18] H. Guo, J. Yu, X. He, Y. Hou, F. Dong, S. Zhang, "Improved sparse reconstruction for fluorescence molecular tomography with l1/2 regularization," Biomed. Opt. Express 6, 1648–1664 (2015).

    [19] E. J. Candes, T. Tao, "Decoding by linear programming," IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005).

    [20] J. A. Tropp, A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inform. Theory 53(12), 4655–4666 (2007).

    [21] D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, J. Tian, "Efficient reconstruction method for l1 regularization in fluorescence molecular tomography," Appl. Opt. 49(36), 6930–6937 (2010).

    [22] J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, J. Tian, " Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method," Biomed. Opt. Express 5(2), 387–406 (2014).

    [23] D. Needell, J. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Appl. Comput. Harmon. Anal. 26(3), 301–321 (2008).

    [24] M. A. Davenport, D. Needell, M. B. Wakin, "Signal space cosamp for sparse recovery with redundant dictionaries," IEEE Trans. Inform. Theory 59(10), 6820–6829 (2013).

    [25] Y. Yongdou, Y. Jianqiao, W. Yuyong, L. Xia, C. Tingting, "A improved cosamp algorithm based on correlation coefficient for compressed sensing image reconstruction," J. Comput. Inform. Syst. 9(18), 7325–7331 (2013).

    [26] A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, R. Blasberg, "In vivo bioluminescence tomography with a blocking-off finitedi fference sp3 method and mri/ct coregistration," Med. Phys. 37(1), 329–338 (2010).

    [27] M. Chu, H. Dehghani, "Image reconstruction in diffuse optical tomography based on simplified spherical harmonics approximation," Opt. Express 17(26), 24208–24223 (2009).

    [28] Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J. Tian, H. Herschman, A. F. Chatziioannou, "Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation," Phys. Med. Biol. 54(21), 6477 (2009).

    [29] B. Dogdas, D. Stout, A. F. Chatziioannou, R. M. Leahy, "Digimouse: A 3d whole body mouse atlas from ct and cryosection data," Phys. Med. Biol. 52(3), 577 (2007).

    Xiaowei He, Hongbo Guo, Jingjing Yu, Xu Zhang, Yuqing Hou. Effective and robust approach for fluorescence molecular tomography based on CoSaMP and SP3 model[J]. Journal of Innovative Optical Health Sciences, 2016, 9(6): 1650024
    Download Citation