• Photonics Research
  • Vol. 13, Issue 6, 1459 (2025)
Kaixi Bi1,2,3,4, Linyu Mei3,4,6,*, Shuqi Han3,4, Jialiang Chen3,4..., Yan Zhuang3,4, Exian Liu5, Wenhui Wang3,4 and Xiujian Chou3,4,7,*|Show fewer author(s)
Author Affiliations
  • 1School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
  • 2CLP Pengyue Electronic Technology Co., Ltd., Taiyuan 030032, China
  • 3Key Laboratory of National Defense Science and Technology on Electronic Measurement, North University of China, Taiyuan 030051, China
  • 4Shanxi Key Laboratory of Ferroelectric Micro-Nano Devices and Systems, North University of China, Taiyuan 030051, China
  • 5School of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha 410004, China
  • 6e-mail: mly81@163.com
  • 7e-mail: XiujianChou@nuc.edu.cn
  • show less
    DOI: 10.1364/PRJ.544524 Cite this Article Set citation alerts
    Kaixi Bi, Linyu Mei, Shuqi Han, Jialiang Chen, Yan Zhuang, Exian Liu, Wenhui Wang, Xiujian Chou, "Electron–phonon coupling enhanced by graphene/PZT heterostructure for infrared emission and optical information transmission," Photonics Res. 13, 1459 (2025) Copy Citation Text show less
    References

    [1] B. Fang, S. C. Bodepudi, F. Tian. Bidirectional mid-infrared communications between two identical macroscopic graphene fibres. Nat. Commun., 11, 6368(2020).

    [2] M. Aziz, C. Xie, V. Pusino. Multispectral mid-infrared light emitting diodes on a GaAs substrate. Appl. Phys. Lett., 111, 102102(2017).

    [3] H. Oguchi, E. J. Heilweil, D. Josell. Infrared emission imaging as a tool for characterization of hydrogen storage materials. J. Alloys Compd., 477, 8-15(2009).

    [4] G. Hong, A. L. Antaris, H. Dai. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng., 1, 0010(2017).

    [5] C. Roques-Carmes, S. E. Kooi, Y. Yang. Towards integrated tunable all-silicon free-electron light sources. Nat. Commun., 10, 3176(2019).

    [6] F. Yuan, G. Folpini, T. Liu. Bright and stable near-infrared lead-free perovskite light-emitting diodes. Nat. Photonics, 18, 170-176(2024).

    [7] Y. Lian, D. Lan, S. Xing. Ultralow-voltage operation of light-emitting diodes. Nat. Commun., 13, 3845(2022).

    [8] S. Wu, P. Xiong, Q. Liu. Self-activated tungstate phosphor for near-infrared light-emitting diodes. Adv. Opt. Mater., 10, 2201718(2022).

    [9] G. Granger, M. Bailly, H. Delahaye. GaAs-chip-based mid-infrared supercontinuum generation. Light Sci. Appl., 12, 252(2023).

    [10] C. C. Tseng, S. Y. Lin, W. H. Lin. Room-temperature operation type-II GaSb/GaAs quantum-dot infrared light-emitting diode. 22nd International Conference on Indium Phosphide and Related Materials (IPRM), 1-3(2010).

    [11] J. Tillement, C. Cervera, J. Baylet. Design and characterization of 5 μm pitch InGaAs photodiodes using in situ doping and shallow mesa architecture for SWIR sensing. Sensors, 23, 9219(2023).

    [12] L. J. Lim, X. Zhao, Z. K. Tan. Non-toxic CuInS2/ZnS colloidal quantum dots for near-infrared light-emitting diodes. Adv. Mater., 35, 2301887(2023).

    [13] L. Müller, I. Käpplinger, S. Biermann. Infrared emitting nanostructures for highly efficient microhotplates. J. Micromech. Microeng., 24, 035014(2014).

    [14] F. Li, H. San, C. Li. MEMS-based plasmon infrared emitter with hexagonal hole arrays perforated in the Al-SiO2-Si structure. J. Micromech. Microeng., 21, 105023(2011).

    [15] W. Wang, C. Fu, W. Tan. Thermal radiative properties of a SiC grating on a photonic crystal. J. Heat Transfer, 135, 091504(2013).

    [16] T. Asano, M. Suemitsu, K. Hashimoto. Near-infrared–to–visible highly selective thermal emitters based on an intrinsic semiconductor. Sci. Adv., 2, e1600499(2016).

    [17] Y. D. Kim, H. Kim, Y. Cho. Bright visible light emission from graphene. Nat. Nanotechnol., 10, 676-681(2015).

    [18] A. Kuzmina, M. Parzefall, P. Back. Resonant light emission from graphene/hexagonal boron nitride/graphene tunnel junctions. Nano Lett., 21, 8332-8339(2021).

    [19] M. Freitag, H.-Y. Chiu, M. Steiner. Thermal infrared emission from biased graphene. Nat. Nanotechnol., 5, 497-501(2010).

    [20] D.-H. Chae, B. Krauss, K. von Klitzing. Hot phonons in an electrically biased graphene constriction. Nano Lett., 10, 466-471(2009).

    [21] V. E. Dorgan, A. Behnam, H. J. Conley. High-field electrical and thermal transport in suspended graphene. Nano Lett., 13, 4581-4586(2013).

    [22] X. Gao, L. Zheng, F. Luo. Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nat. Commun., 13, 5410(2022).

    [23] S. Berciaud, M. Y. Han, K. F. Mak. Electron and optical phonon temperatures in electrically biased graphene. Phys. Rev. Lett., 104, 227401(2010).

    [24] A. M. DaSilva, K. Zou, J. K. Jain. Mechanism for current saturation and energy dissipation in graphene transistors. Phys. Rev. Lett., 104, 236601(2010).

    [25] S. H. Zhang, W. Xu. Absorption of surface acoustic waves by graphene. AIP Adv., 1, 022146(2011).

    [26] M.-H. Bae, S. Islam, V. E. Dorgan. Scaling of high-field transport and localized heating in graphene transistors. ACS Nano, 5, 7936-7944(2011).

    [27] Q. Liu, W. Xu, X. Li. Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures. Int. J. Extreme Manuf., 6, 015501(2023).

    [28] W. Jie, J. Hao. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors. Nanoscale, 6, 6346-6362(2014).

    [29] S. Fratini, F. Guinea. Substrate-limited electron dynamics in graphene. Phys. Rev. B, 77, 195415(2008).

    [30] H. Fan, Z. Tan, H. Liu. Enhanced ferroelectric and piezoelectric properties in graphene-electroded Pb(Zr,Ti)O3 thin films. ACS Appl. Mater. Interfaces, 14, 17987-17994(2022).

    [31] M. Lee, J. R. Renshof, K. J. van Zeggeren. Ultrathin piezoelectric resonators based on graphene and free-standing single-crystal BaTiO3. Adv. Mater., 34, 2204630(2022).

    [32] S. Han, L. Mei, J. Chen. Flexoelectricity-enabled modulation of Fermi level in graphene/PZT heterostructure for weak pressure signals sensor. IEEE Sens. J., 24, 15918-15926(2024).

    [33] A. V. Alaferdov, R. Savu, C. Fantini. Raman spectra of multilayer graphene under high temperatures. J. Phys.: Condens. Matter, 32, 385704(2020).

    [34] H. N. Liu, X. Cong, M. L. Lin. The intrinsic temperature-dependent Raman spectra of graphite in the temperature range from 4 to 1000 K. Carbon, 152, 451-458(2019).

    [35] A. Barreiro, M. Lazzeri, J. Moser. Transport properties of graphene in the high-current limit. Phys. Rev. Lett., 103, 076601(2009).

    Kaixi Bi, Linyu Mei, Shuqi Han, Jialiang Chen, Yan Zhuang, Exian Liu, Wenhui Wang, Xiujian Chou, "Electron–phonon coupling enhanced by graphene/PZT heterostructure for infrared emission and optical information transmission," Photonics Res. 13, 1459 (2025)
    Download Citation