• Frontiers of Optoelectronics
  • Vol. 4, Issue 4, 369 (2011)
Gentian YUE, Jihuai WU*, Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, and Yaoming XIAO
Author Affiliations
  • Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, The Key Laboratory for Functional Materials of Fujian Higher Education, Institute of Material Physical Chemistry, Huaqiao University, Quanzhou 362021, China
  • show less
    DOI: 10.1007/s12200-011-0181-6 Cite this Article
    Gentian YUE, Jihuai WU, Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, Yaoming XIAO. Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2011, 4(4): 369 Copy Citation Text show less
    References

    [1] O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740

    [2] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789-1791

    [3] Wu J H, Yue G T, Xiao Y M, Ye H F, Lin J M, Huang M L. Application of a polymer heterojunction in dye-sensitized solar cells. Electrochimica Acta, 2010, 55(20): 5798-5802

    [4] Gratzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 2005, 44(20): 6841-6851

    [5] Wu J, Lan Z, Hao S, Li P, Lin J, Huang M, Fang L, Huang Y. Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry, 2008, 80(11): 2241-2258

    [6] Wu J, Hao S, Lan Z, Lin J, Huang M, Huang Y, Li P, Yin S, Sato T. An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%. Journal of the American Chemical Society, 2008, 130(35): 11568-11569

    [7] Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583-585

    [8] Gratzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338-344

    [9] Wu J, Lan Z, Lin J M, Huang M L, Hao S C, Sato T, Yin S. A novel thermosetting gel electrolyte for stable quasi-solid-state dyesensitized solar cells. Advanced Materials (Deerfield Beach, Fla.), 2007, 19(22): 4006-4011

    [10] Peter L M. Dye-sensitized nanocrystalline solar cells. Physical Chemistry Chemical Physics, 2007, 9(21): 2630-2642

    [11] Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coordination Chemistry Reviews, 2004, 248(13-14): 1421-1446

    [12] Jeon S S, Kim C, Ko J, Im S S. Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21(22): 8146-8151

    [13] Halme J, Toivola M, Tolvanen A, Lund P. Charge transfer resistance of spray deposited and compressed counter electrodes for dyesensitized nanoparticle solar cells on plastic substrates. Solar Energy Materials and Solar Cells, 2006, 90(7-8): 872-886

    [14] Zhu H W, Zeng H F, Subramanian V, Masarapu C, Hung K H, Wei B. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology, 2008, 19(46): 465204

    [15] Lee W J, Ramasamy E, Lee D Y, Song J S. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Applied Materials & Interfaces, 2009, 1(6): 1145-1149

    [16] Ramasamy E, Lee W J, Lee D Y, Song J S. Spray coated multi-wall carbon nano-tube counter electrode for tri-iodide (I-3) reduction in dye-sensitized solar cells. Electrochemistry Communications, 2008, 10(7): 1087-1089

    [17] Kay A, Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996, 44(1): 99-117

    [18] Li G R,Wang F, Jiang QW, Gao X P, Shen PW. Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angewandte Chemie International Edition, 2010, 49(21): 3653-3656

    [19] Najafi E, Kim J Y, Han S H, Shin K. UV-ozone treatment of multiwalled carbon nanotubes for enhanced organic solvent dispersion. Colloid Surf. A, 2006, 284-285: 373-378

    [20] Kim K K, Yoon S M, Choi J Y, Lee J, Kim B K, Kim J M, Lee J H, Paik U, Park M H, Yang C W, An K H, Chung Y, Lee Y H. Design of dispersants for the dispersion of carbon nanotubes in an organic solvent. Advanced Functional Materials, 2007, 17(11): 1775-1783

    [21] Wu T M, Lin Y W, Liao C S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon, 2005, 43(4): 734-740

    [22] Yun D J, Hong K, Kim S, YunWM, Jang J Y, KwonWS, Park C E, Rhee S W. Multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices. ACS Applied Materials & Interfaces, 2011, 3(1): 43-49

    [23] Jonsson S K M, Birgerson J, Crispin X, Greczynski G, Osikowicz W, Gon A W D, Salaneck W R, Fahlman M. The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synthetic Metals, 2003, 139(1): 1-10

    [24] Groenendaal L, Jonas F, Feitag D, Pielartzik H, Reynolds J R. Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced Materials (Deerfield Beach, Fla.), 2000, (12): 482

    [25] Hwang J, Amy F, Kahn A. Spectroscopic study on sputtered PEDOT$ PSS: role of surface PSS layer. Organic Electronics, 2006, 7(5): 387-396

    [26] Zhou E, Tan Z, Huo L, He Y, Yang C, Li Y. Effect of branched conjugation structure on the optical, electrochemical, hole mobility, and photovoltaic properties of polythiophenes. Journal of Physical Chemistry B, 2006, 110(51): 26062-26067

    [27] Gratzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338-344

    [28] Renouard T, Fallahpour R A, NazeeruddinMK, Humphry-Baker R, Gorelsky S I, Lever A B, Gratzel M. Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis. Inorganic Chemistry, 2002, 41(2): 367-378

    [29] Popov A I, Geske D H. Voltammetric evaluation of the stability of trichloride, tribromide, and triiodide ions in nitromethane, acetone, and acetonitrile. Journal of the American Chemical Society, 1958, 80(6): 1340-1352

    [30] Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K. High-performance carbon counter electrode for dyesensitized solar cells. Solar Energy Materials and Solar Cells, 2003, 79(4): 459-469

    [31] Guo H, Li Y, Fan L,Wu X, Guo M. Voltammetric behavior study of folic acid at phosphomolybdic-polypyrrole film modified electrode. Electrochimica Acta, 2006, 51(28): 6230-6237

    [32] Huang J, Miller P F, de Mello J C, de Mello A J, Bradley D D C. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synthetic Metals, 2003, 139(3): 569-572

    [33] Aasmundtveit K E, Samuelsen E J, Pettersson L A A, Inganas O, Johansson T, Feidenhans’l R. Structure of thin films of poly (3, 4-ethylenedioxythiophene). Synthetic Metals, 1999, 101(1-3): 561-564

    [34] Al-Ibrahim M, Ambacher O, Sensfuss S, Gobsch G. Effects of solvent and annealing on the improved performance of solar cells based on poly (3-hexylthiophene): fullerene. Applied Physics Letters, 2005, 86(20): 201120

    [35] Senadeera G, Kitamura T, Wada Y, Yanagida S. Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly (3-thiophenemalonic acid). Solar Energy Materials and Solar Cells, 2005, 88(3): 315-322

    [36] Lee J, Kim W, Lee H, Shin W, Jin S, Lee W, Kim M. Preparations and photovoltaic properties of dye-sensitized solar cells using thiophene-based copolymers as polymer electrolytes. Polymers for Advanced Technologies, 2006, 17(9-10): 709-714

    [37] Thampi K R, Kiwi J, Gratzel M. Methanation and photomethanation of carbon dioxide at room temperature and atmospheric pressure. Nature, 1987, 327(6122): 506-508

    Gentian YUE, Jihuai WU, Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, Yaoming XIAO. Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2011, 4(4): 369
    Download Citation