• Journal of Inorganic Materials
  • Vol. 37, Issue 1, 101 (2022)
Min JIN*, Xudong BAI, Rulin ZHANG, Lina ZHOU, and Rongbin LI
DOI: 10.15541/jim20200653 Cite this Article
Min JIN, Xudong BAI, Rulin ZHANG, Lina ZHOU, Rongbin LI. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property[J]. Journal of Inorganic Materials, 2022, 37(1): 101 Copy Citation Text show less
References

[1] A AlZAHRANI A, Z ZAINAL, A TALIB Z et al. Study the effect of the heat treatment on the photoelectrochemical performance of binary heterostructured photoanode Ag2S/ZnO nanorod arrays in photoelectrochemical cells. Materials Science Forum, 1002, 187-199(2020). https://www.scientific.net/MSF.1002

[2] S ALHARTHI S, A ALZAHRANI, M A N RAZVI et al. Spectroscopic and electrical properties of Ag2S/PVA nanocomposite films for visible-light optoelectronic devices. Journal of Inorganic and Organometallic Polymers and Materials, 30, 3878-3885(2020). https://doi.org/10.1007/s10904-020-01519-4

[3] Y XIE, H YOO S, C CHEN et al. Ag2S quantum dots-sensitized TiO2 nanotube array photoelectrodes. Materials Science and Engineering B, 177, 106-111(2012). https://linkinghub.elsevier.com/retrieve/pii/S0921510711004193

[4] S KONDRATENKO T, S SMIRNOV M, V OVCHINNIKOV O et al. Nonlinear optical properties of hybrid associates of Ag2S quantum dots with erythrosine molecules. Optik-International Journal for Light and Electron Optics, 200, 163391(2020). https://linkinghub.elsevier.com/retrieve/pii/S0030402619312896

[5] C YOU J, B ZHAN S, J WEN et al. Construction of heterojunction of Ag2S modified yttrium manganate visible photocatalyst and study on photocatalytic mechanism. Optik-International Journal for Light and Electron Optics, 217, 164900(2020). https://linkinghub.elsevier.com/retrieve/pii/S0030402620307361

[6] R VOGEL, P HOYER, H WELLER. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. The Journal of Physical Chemistry, 98, 3183-3188(1994). https://pubs.acs.org/doi/abs/10.1021/j100063a022

[7] M DONG Z, S SUN H, J XU et al. Preparation of macroscopical long Ag2S nanowire clusters characteristics. Acta Physica Sinica, 60, 676-680(2011).

[8] P DU Y, B XU, T FU et al. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. Journal of the American Chemical Society, 132, 1470-1471(2010). https://pubs.acs.org/doi/10.1021/ja909490r

[9] Y ZHANG, S HONG G, J ZHANG Y et al. Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano, 6, 3695-3702(2012). https://pubs.acs.org/doi/10.1021/nn301218z

[10] I HWANG, M SEOL, H Kim et al. Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with CdS. Applied Physics Letters, 103(2013).

[11] X SHI, Y CHEN H, F HAO et al. Room-temperature ductile inorganic semiconductor. Nature Materials, 17, 421-426(2018). https://doi.org/10.1038/s41563-018-0047-z

[12] W CHEN Z, Y ZHANG X, Q LIN S et al. Rationalizing phonon dispersion for lattice thermal conductivity of solids. National Science Review, 5, 888-894(2018). https://academic.oup.com/nsr/article/5/6/888/5104387

[13] G JEFFREY S, T AGNE M, G RAMYA. Thermal conductivity of complex materials. National Science Review, 6, 380-381(2019). https://academic.oup.com/nsr/article/6/3/380/5423892

[14] T WANG, Y CHEN H, F QIU P et al. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity. Acta Physica Sinica, 68, 18-26(2019).

[15] Y CHEN H, M YUE Z, D REN D et al. Thermal conductivity during phase transitions. Advanced Materials, 31, 1806518(2019).

[16] P LU, L LIU H, X YUAN et al. Multiformity and fluctuation of Cu ordering in Cu2Se thermoelectric materials. Journal of Materials Chemistry A, 3, 6901-6908(2015). http://xlink.rsc.org/?DOI=C4TA07100J

[17] B ZHANG Y, W WANG Y, L XI L et al. Electronic structure of antifluorite Cu2X (X=S, Se, Te) within the modified Becke- Johnson potential plus an on-site Coulomb U. Journal of Chemical Physics, 140, 074702(2014). http://aip.scitation.org/doi/10.1063/1.4865257

[18] M JIN, Q LIN S, W LI et al. Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6. Chemistry of Materials, 31, 2603-2610(2019). https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00393

[19] J JIANG, D CHEN L, Q BAI S et al. Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x crystals prepared via zone melting. Journal of Crystal Growth, 277, 258-263(2005). https://linkinghub.elsevier.com/retrieve/pii/S0022024804021335

[20] X WANG, T XU J, Q LIU G et al. Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe. NPG Asia Materials, 9, 426(2017).

[21] B WANG X, F QIU P, S ZHANG T et al. Compound defects and thermoelectric properties in ternary CuAgSe-based materials. Journal of Materials Chemistry A, 3, 13662-13670(2015). http://xlink.rsc.org/?DOI=C5TA02721G

[22] T DAY, F DRYMIOTIS, S ZHANG T et al. Evaluating the potential for high thermoelectric efficiency of silver selenide. Journal of Materials Chemistry C, 1, 7568-7573(2013). http://xlink.rsc.org/?DOI=c3tc31810a

[23] Z PEI Y, A HEINZ N, J SNYDER G. Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. Journal of Materials Chemistry, 21, 18256-18260(2011). http://xlink.rsc.org/?DOI=c1jm13888j

Min JIN, Xudong BAI, Rulin ZHANG, Lina ZHOU, Rongbin LI. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property[J]. Journal of Inorganic Materials, 2022, 37(1): 101
Download Citation