• Opto-Electronic Engineering
  • Vol. 51, Issue 5, 240044 (2024)
Liming Liang, Pengwei Long*, Baohe Lu, and Renjie Li
Author Affiliations
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • show less
    DOI: 10.12086/oee.2024.240044 Cite this Article
    Liming Liang, Pengwei Long, Baohe Lu, Renjie Li. Improvement of GBS-YOLOv7t for steel surface defect detection[J]. Opto-Electronic Engineering, 2024, 51(5): 240044 Copy Citation Text show less
    References

    [1] H Y Chen, P Zhao, H W Yan. Crack detection based on multi-scale Faster RCNN with attention. Opto-Electron Eng, 48, 200112(2021).

    [2] L M Liang, B H Lu, P W Long et al. Adaptive feature fusion cascade transformer retinal vessel segmentation algorithm. Opto-Electron Eng, 50, 230161(2023).

    [3] L Y Zhao, Y Q Wu. Research progress of surface defect detection methods based on machine vision. Chin J Sci Instrum, 43, 198-219(2023).

    [4] Z Liu, J K W Yeoh, X Y Gu et al. Automatic pixel-level detection of vertical cracks in asphalt pavement based on GPR investigation and improved mask R-CNN. Autom Constr, 146, 104689(2023).

    [5] W M Zhang, Q K Zhu, Y Q Li et al. MAM Faster R-CNN: improved Faster R-CNN based on malformed attention module for object detection on X-ray security inspection. Digital Signal Process, 139, 104072(2023).

    [6] B Hu, J H Wang. Detection of PCB surface defects with improved faster-RCNN and feature pyramid network. IEEE Access, 8, 108335-108345(2020).

    [7] H M Qian, H L Wang, S Feng et al. FESSD: SSD target detection based on feature fusion and feature enhancement. J Real-Time Image Process, 20, 2(2023).

    [8] M Hussain. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection. Machines, 11, 677(2023).

    [9] T Y Lin, P Dollár, R Girshick et al. Feature pyramid networks for object detection, 936-944(2017). https://doi.org/10.1109/CVPR.2017.106

    [10] S Liu, L Qi, H F Qin et al. Path aggregation network for instance segmentation, 8759-8768(2018). https://doi.org/10.1109/CVPR.2018.00913

    [11] J T Fang, X Y Tan. Defect detection of metal surface based on attention cascade R-CNN. J Front Comput Sci Technol, 15, 1245-1254(2021).

    [12] C Xiong, A N Yu, X H Gao et al. Steel surface defect detection algorithm based on improved YOLOX. Electron Meas Technol, 46, 151-157(2023).

    [13] C H Zhao, S Luo, J L Tan et al. Detection of steel surface defects based on PC-YOLOv7 algorithm. Foreign Electron Meas Technol, 42, 137-145(2023).

    [14] J W Lian, J H He, Y Niu et al. Fast and accurate detection of surface defect based on improved YOLOv4. Assem Autom, 42, 134-146(2022).

    [15] Y T Ma, H D Zhao, C Yan et al. Strip steel surface defect detection method by improved YOLOv5 network. J Electron Meas Instrum, 36, 150-157(2022).

    [16] C Y Wang, A Bochkovskiy, H Y M Liao. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 7464-7475(2023). https://doi.org/10.1109/CVPR52729.2023.00721

    [17] G Y Yang, J Lei, Z K Zhu et al. AFPN: Asymptotic feature pyramid network for object detection, 2184-2189(2023). https://doi.org/10.1109/SMC53992.2023.10394415

    [18] H L Li, J Li, H B Wei et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles(2022). https://doi.org/10.48550/arXiv.2206.02424

    [19] S T Liu, D Huang, Y H Wang. Learning spatial fusion for single-shot object detection(2019). https://doi.org/10.48550/arXiv.1911.09516

    [20] L Zhu, X J Wang, Z H Ke et al. BiFormer: Vision transformer with bi-level routing attention, 10323-10333(2023). https://doi.org/10.1109/CVPR52729.2023.00995

    [21] Z Gevorgyan. SIoU loss: More powerful learning for bounding box regression(2022). https://doi.org/10.48550/arXiv.2205.12740

    [22] Z G Li, X M Wei, M Hassaballah et al. A deep learning model for steel surface defect detection. Complex Intell Syst, 10, 885-897(2024).

    [23] Y Q Cao, M L Wu, L Xu. Steel surface defect detection based on improved YOLOv5 algorithm. J Graphics, 44, 335-345(2023).

    Liming Liang, Pengwei Long, Baohe Lu, Renjie Li. Improvement of GBS-YOLOv7t for steel surface defect detection[J]. Opto-Electronic Engineering, 2024, 51(5): 240044
    Download Citation