• Infrared and Laser Engineering
  • Vol. 48, Issue 11, 1113004 (2019)
Hu Shanjiang1、2、*, He Yan1, Tao Bangyi3, Yu Jiayong4, and Chen Weibiao1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/irla201948.1113004 Cite this Article
    Hu Shanjiang, He Yan, Tao Bangyi, Yu Jiayong, Chen Weibiao. Classification of sea and land waveforms based on deep learning for airborne laser bathymetry[J]. Infrared and Laser Engineering, 2019, 48(11): 1113004 Copy Citation Text show less

    Abstract

    Classification of sea and land returns in airborne lidar was essential for the research of coastal zones and their changing nature. A method for classification using deep learning on the original airborne lidar echo was proposed. A fully connected neural network, and a one-dimensional convolutional neural network (CNN), were used on a training dataset and test datasets from in-situ measurements, and a classification accuracy of 99.6% was obtained. The model was utilized on the datasets from different areas, a classification accuracy of 95.6% was achieved and the processing speed was increased by about 52% compared to support vector machine (SVM) method. The results denote that the deep learning method is very effective for classification of airborne lidar echo waveforms with high precision and speed. It may present further use as a candidate method for classifying species on the sea floor with airborne laser bathymetry.
    Hu Shanjiang, He Yan, Tao Bangyi, Yu Jiayong, Chen Weibiao. Classification of sea and land waveforms based on deep learning for airborne laser bathymetry[J]. Infrared and Laser Engineering, 2019, 48(11): 1113004
    Download Citation