• Laser & Optoelectronics Progress
  • Vol. 59, Issue 7, 0700003 (2022)
Jianwei Gong1 and Bing Chen1、2、*
Author Affiliations
  • 1School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou , Fujian 350108, China
  • 2Fuzhou Xintu Optoelectronics Co., Ltd., Fuzhou , Fujian 350026, China
  • show less
    DOI: 10.3788/LOP202259.0700003 Cite this Article Set citation alerts
    Jianwei Gong, Bing Chen. Core Devices and Coupling Modes of Indirect X-Ray Detectors[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0700003 Copy Citation Text show less
    References

    [1] Zhang H Y, Li Y X, Cao B et al. Advances in X-ray imaging technology[J]. Scientia Sinica (Vitae), 50, 1202-1212(2020).

    [2] Gong Y X, Yu Z J, Wang J J. Application of X-ray 3D imaging in the field of battery materials research[J]. Chemistry, 83, 349-355(2020).

    [3] Chen Z Q, Zhang L, Jin X. Recent progress on X-ray security inspection technologies[J]. Chinese Science Bulletin, 62, 1350-1365(2017).

    [4] Lü H Y, Zou J, Zhao J T et al. Review on development of nano-computed tomography imaging technology[J]. Laser & Optoelectronics Progress, 57, 140001(2020).

    [5] Miao Q, Wang G, Li Y J. Development progresses of X-ray detectors[J]. Sensor World, 21, 7-13(2015).

    [6] Hartmann W, Markewitz G, Rettenmaier U et al. High-resolution direct-display X-ray topography[J]. Applied Physics Letters, 27, 308-309(1975).

    [7] Heo J H, Shin D H, Park J K et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging[J]. Advanced Materials, e1801743(2018).

    [8] Chen Q S, Wu J, Ou X Y et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 561, 88-93(2018).

    [9] Zhou F G, Li Z Z, Lan W et al. Halide perovskite, a potential scintillator for X-ray detection[J]. Small Methods, 4, 2000506(2020).

    [10] Wang Y M, Wang Y X, Yin X M et al. Research progress on uranyl-bearing X-ray scintillator[J]. Journal of Nuclear and Radiochemistry, 41, 342-348(2019).

    [11] Lü S C, Zhou S F, Tang J Z et al. Research progress in development of glass scintillator[J]. Acta Photonica Sinica, 48, 1148011(2019).

    [12] Gouveia L C P, Choubey B. On evolution of CMOS image sensors[J]. International Journal on Smart Sensing and Intelligent Systems, 7, 1-6(2020).

    [13] Moomaw B. Camera technologies for low light imaging: overview and relative advantages[J]. Methods in Cell Biology, 114, 243-283(2013).

    [14] Liu L N, Xue B, Wei H et al. Application of two new image detectors in living cell imaging system[J]. Acta Laser Biology Sinica, 28, 513-517(2019).

    [15] Wang W X, Ling Z X, Zhang C et al. Characterization of a BSI sCMOS for soft X-ray imaging spectroscopy[J]. Journal of Instrumentation, 14, P02025(2019).

    [16] Han Y P, Li R H, Han Y. X-ray detector coupling method based on advanced fiber optics taper[J]. Journal of Detection & Control, 37, 15-19(2015).

    [17] van Silfhout R G, Kachatkou A S. Fibre-optic coupling to high-resolution CCD and CMOS image sensors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 597, 266-269(2008).

    [18] Uesugi K, Hoshino M, Takeuchi A. Introducing high efficiency image detector to X-ray imaging tomography[J]. Journal of Physics: Conference Series, 849, 012051(2017).

    [19] Xie H L, Du G H, Deng B et al. Study of Scintillator thickness optimization of lens-coupled X-ray imaging detectors[J]. Journal of Instrumentation, 11, C03057(2016).

    [20] Uesugi K, Hoshino M, Yagi N. Comparison of lens- and fiber-coupled CCD detectors for X-ray computed tomography[J]. Journal of Synchrotron Radiation, 18, 217-223(2011).

    [21] Wang Y P, Li G, Zhang J et al. Improving the detection efficiency and modulation transfer function of lens-coupled indirect X-ray imaging detectors based on point spread functions simulated according to lens performance parameters[J]. Journal of Synchrotron Radiation, 25, 1093-1105(2018).

    [22] Zhang Y X, Xie H L, Du G H et al. Influence of scintillator’s thickness on imaging quality of lens-coupled hard X-ray imaging detector[J]. Nuclear Techniques, 37, 9-14(2014).

    [23] Tous J, Parizek J, Blazek K et al. Resolution limits of a single crystal scintillator based X-ray micro-radiography camera[J]. Journal of Instrumentation, 15, C02014(2020).

    [24] Lu B, Wang Y S, Yang Y J et al. Hard X-ray imaging based on CCD and CsI scintillator[J]. Optics and Precision Engineering, 25, 2865-2871(2017).

    [25] Cha B K, Kim C R, Jeon S et al. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 731, 315-319(2013).

    [26] Koukou V, Martini N, Valais I et al. Resolution properties of a calcium tungstate (CaWO4) screen coupled to a CMOS imaging detector[J]. Journal of Physics: Conference Series, 931, 012027(2017).

    [27] Li X K, Qiu G M, Qiu T et al. Progress in scintillation materials[C], 23, 37-45(2005).

    [28] Li J, Chen X P, Kou H M et al. Recent development on garnet single crystal and ceramic scintillators[J]. Journal of the Chinese Ceramic Society, 46, 116-127(2018).

    [29] Yang Y, Shang S S, Chen Y L et al. Review of inorganic scintillation materials[J]. Materials Review, 30, 87-91(2016).

    [30] Weber M J. Inorganic scintillators: today and tomorrow[J]. Journal of Luminescence, 100, 35-45(2002).

    [31] Ren G H, Yang F. The research history and present situation of some halide scintillation crystals[J]. Scientia Sinica (Technologica), 47, 1149-1164(2017).

    [32] Desjardins K, Medjoubi K, Dennetiere D. Imaging performances of an in-house compact high spatial resolution X-ray detector based on electrowetting liquid lens[J]. Journal of Instrumentation, 15, P08014(2020).

    [33] Cha B K, Kim J Y, Kim T J et al. Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors[J]. Radiation Measurements, 45, 742-745(2010).

    [34] Tous J, Horodysky P, Blazek K et al. High resolution low energy X-ray microradiography using a CCD camera[J]. Journal of Instrumentation, 6, C01048(2011).

    [35] Choi C H, Kim H T, Choe J Y et al. In vivo high-resolution synchrotron radiation imaging of collagen-induced arthritis in a rodent model[J]. Journal of Synchrotron Radiation, 17, 393-399(2010).

    [36] Douissard P A, Cecilia A, Rochet X et al. A versatile indirect detector design for hard X-ray microimaging[J]. Journal of Instrumentation, 7, P09016(2012).

    [37] Seo C W, Kyung Cha B, Jeon S et al. Characterization of indirect X-ray imaging detector based on nanocrystalline gadolinium oxide scintillators for high-resolution imaging application[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 699, 129-133(2013).

    [38] Michail C M, Seferis I E, Sideras T et al. Image quality assessment of a CMOS/Gd2O2S∶Pr, Ce, F X-ray sensor[J]. Journal of Physics: Conference Series, 637, 012018(2015).

    [39] Shirasawa T, Liang X Y, Voegeli W et al. High-speed multi-beam X-ray imaging using a lens coupling detector system[J]. Applied Physics Express, 13, 077002(2020).

    [40] Guo L N. Research on key technologies of X-ray imaging detection[D], 8-36(2018).

    [41] Guo L N, Liu S, Chen D J et al. Fabrication and performance of micron thick CsI(Tl) films for X-ray imaging application[J]. IEEE Transactions on Nuclear Science, 63, 1827-1831(2016).

    [42] Cha B K, Kim J Y, Kim T J et al. Investigation of the performance of scintillator-based CMOS flat panel detectors for X-ray and thermal neutron imaging[J]. IEEE Transactions on Nuclear Science, 57, 1409-1413(2010).

    [43] Sahlholm A, Svenonius O, Petersson S. Scintillator technology for enhanced resolution and contrast in X-ray imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 648, S16-S19(2011).

    [44] Cha B K, Kim B J, Cho G et al. A pixelated CsI (Tl) scintillator for CMOS-based X-ray image sensor[C], 1139-1143(2006).

    [45] Yao D L, Gu M, Liu X L et al. Fabrication and performance of CsI(Tl) scintillation films with pixel-like columnar-matrix structure[J]. IEEE Transactions on Nuclear Science, 62, 699-703(2015).

    [46] Svenonius O, Sahlholm A, Wiklund P et al. Performance of an X-ray imaging detector based on a structured scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 607, 138-140(2009).

    [47] Cha B K, Lee D H, Kim B et al. High-resolution X-ray imaging based on pixel-structured CsI∶Tl scintillating screens for indirect X-ray image sensors[J]. Journal of the Korean Physical Society, 59, 3670-3673(2011).

    [48] Nagarkar V V, Gupta T K, Miller S R et al. Structured CsI(Tl) scintillators for X-ray imaging applications[J]. IEEE Transactions on Nuclear Science, 45, 492-496(1998).

    [49] Badel X, Norlin B, Kleimann P et al. Performance of scintillating waveguides for CCD-based X-ray detectors[J]. IEEE Transactions on Nuclear Science, 53, 3-8(2006).

    [50] Koch A, Raven C, Spanne P et al. X-ray imaging with submicrometer resolution employing transparent luminescent screens[J]. Journal of the Optical Society of America A, 15, 1940-1951(1998).

    [51] Zhu Q X. CCD imaging detector[J]. Modern Physics, 21, 8-11(2009).

    [52] Yao L B. Low-light-level CMOS image sensor technique[J]. Infrared Technology, 35, 125-132(2013).

    [53] Zhang Y T, Chai M Y, Sun D X et al. Digital TDI technology based on global shutter sCMOS image sensor for low-light-level imaging[J]. Acta Optica Sinica, 38, 0911001(2018).

    [54] Wang S H, Chen Y J, Liu B. A review of the development of CCD and CMOS technology at home and abroad[J]. Internal Combustion Engine & Parts, 112-114(2017).

    [55] Wang X D, Ye Y T. Comparative research and future tendency between CMOS and CCD image sensor[J]. Electronic Design Engineering, 18, 178-181(2010).

    [56] Song M, Kuai X K, Zheng Y R. Comparison of detection performance in CCD and CMOS image sensor[J]. Semiconductor Optoelectronics, 26, 5-9(2005).

    [57] Yao P P, Sun L, Xu S L et al. Design of a scientific-grade CCD refrigeration system and analysis of its thermal characteristics[J]. Acta Optica Sinica, 40, 1704001(2020).

    [58] Liu R K, Xing D Z, Tang Z H et al. An overview of low noise CMOS image sensor technique[J]. Semiconductor Optoelectronics, 41, 768-773(2020).

    [59] Guo H. Development and trend of CMOS sensor technology[J]. China Security & Protection, 7-10(2015).

    [60] Wang S W, Zhang G X, Xu W et al. Adaptive moving window-based non-uniformity correction of CMOS image[J]. Laser & Optoelectronics Progress, 58, 1401003(2021).

    [61] Mittone A, Manakov I, Broche L et al. Characterization of a sCMOS-based high-resolution imaging system[J]. Journal of Synchrotron Radiation, 24, 1226-1236(2017).

    [62] Li J. A highly reliable and super-speed optical fiber transmission for hyper-spectral SCMOS camera[J]. Optik, 127, 1532-1545(2016).

    [63] Zhang Y T, Cao K Q, Sun D X et al. Low light level detection based on scientific CMOS image sensor with high sensitivity and low noise[J]. Laser & Optoelectronics Progress, 55, 080401(2018).

    [64] Bai H, Yang Y M, Liu Y et al. Adaptive detection and correction of fixed pattern noise in sCMOS cameras[C], 107-111(2018).

    [65] Xin F X. Optical fiber coupling technique of ICCD[J]. Infrared and Laser Engineering, 30, 210-213(2001).

    [66] Song Y, Zhou M, Song G Z et al. Application of X-ray CCD camera in X-ray spot diagnosis of rod-pinch diode[J]. Atomic Energy Science and Technology, 49, 759-764(2015).

    [67] Wang W Y, Ionita C, Huang Y et al. Region-of-interest micro-angiographic fluoroscope detector used in aneurysm and artery stenosis diagnoses and treatment[J]. Proceedings of SPIE, 8313, 831317(2012).

    [68] Panse A S, Jain A, Wang W et al. High resolution emission and transmission imaging using the same detector[C], 3372-3375(2010).

    [69] Vasan S N S, Sharma P, Ionita C N et al. Image acquisition, geometric correction and display of images from a 2×2 X-ray detector array based on electron multiplying charge coupled device (EMCCD) technology[J]. Proceedings of SPIE, 8668, 86685J(2013).

    [70] Zhao Z G, Wang R, Lei Y H et al. Fine adjustable non-glued fiber optic taper array coupled digital X-ray detector[J]. Acta Photonica Sinica, 44, 0504001(2015).

    [71] Su B. Research on coupling technology of CCD and light cone[D], 6-28(2011).

    [72] Thompson A C, Westbrook E M, Lavender W M et al. A large area CMOS detector for shutterless collection of X-ray diffraction data[J]. Journal of Physics: Conference Series, 493, 012019(2014).

    [73] Li X F, Li L, Deng H B et al. Study on light transmission characteristics of fiber optic faceplate and fiber optic taper[J]. Infrared Technology, 36, 617-623(2014).

    [74] Xie H, Luo H, Du G et al. High-efficiency fast X-ray imaging detector development at SSRF[J]. Journal of Synchrotron Radiation, 26, 1631-1637(2019).

    [75] Maidment A D A, Yaffe M J. Analysis of signal propagation in optically coupled detectors for digital mammography: II. lens and fibre optics[J]. Physics in Medicine and Biology, 41, 475-493(1996).

    [76] Schlosser D M, Huth M, Hartmann R et al. Direct and indirect signal detection of 122 keV photons with a novel detector combining a pnCCD and a CsI(Tl) scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 805, 55-62(2016).

    Jianwei Gong, Bing Chen. Core Devices and Coupling Modes of Indirect X-Ray Detectors[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0700003
    Download Citation