• Laser & Optoelectronics Progress
  • Vol. 56, Issue 14, 141401 (2019)
Jiaqi Xue, Xiaohui Chen*, and Liming Lei
Author Affiliations
  • AECC Shanghai Commercial Aircraft Engine Manufacturing Co.Ltd, Shanghai 201306, China
  • show less
    DOI: 10.3788/LOP56.141401 Cite this Article Set citation alerts
    Jiaqi Xue, Xiaohui Chen, Liming Lei. Effects of Microstructure on Mechanical Properties of GH3536 Alloy Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141401 Copy Citation Text show less
    Direction illustration of mechanica property specimens
    Fig. 1. Direction illustration of mechanica property specimens
    Grain morphologies of SLM GH3536. (a) Longitudinal and (b) transverse sections of specimen A; (c) longitudinal and (d) transverse sections of specimen B
    Fig. 2. Grain morphologies of SLM GH3536. (a) Longitudinal and (b) transverse sections of specimen A; (c) longitudinal and (d) transverse sections of specimen B
    XRD pattern of SLM GH3536
    Fig. 3. XRD pattern of SLM GH3536
    Precipitation of SLM GH3536. (a) Transmission photograph; (b) electron diffraction patterns; (c) scanning photograph; (d) EDS pattern
    Fig. 4. Precipitation of SLM GH3536. (a) Transmission photograph; (b) electron diffraction patterns; (c) scanning photograph; (d) EDS pattern
    Microstructures of SLM GH3536. (a) Longitudinal and (b) transverse sections of specimen A; (c) longitudinal and (d) transverse sections of specimen B
    Fig. 5. Microstructures of SLM GH3536. (a) Longitudinal and (b) transverse sections of specimen A; (c) longitudinal and (d) transverse sections of specimen B
    Tensile fractures of SLM GH3536 alloy at room temperature. (a) Longitudinal and (b) transverse fractures of specimen A; (c) longitudinal and (d) transverse fractures of specimen B
    Fig. 6. Tensile fractures of SLM GH3536 alloy at room temperature. (a) Longitudinal and (b) transverse fractures of specimen A; (c) longitudinal and (d) transverse fractures of specimen B
    Fractures of SLM GH3536 alloy at high temperature. (a) Longitudinal and (b) transverse fractures of specimen A; (c) longitudinal and (d) transverse fractures of specimen B
    Fig. 7. Fractures of SLM GH3536 alloy at high temperature. (a) Longitudinal and (b) transverse fractures of specimen A; (c) longitudinal and (d) transverse fractures of specimen B
    Fracture sections of SLM GH3536 alloy at high temperature. (a) Low magnification photograph; (b) high magnification photograph
    Fig. 8. Fracture sections of SLM GH3536 alloy at high temperature. (a) Low magnification photograph; (b) high magnification photograph
    ElementCCrCoMoWFeMnSiNi
    Specimen A0.12021.231.458.850.5818.510.0120.059Bal.
    Specimen B0.06221.711.619.190.6018.790.020.35Bal.
    Industry standard[12]0.05-0.1520.50-23.000.50-2.508.00-10.000.20-1.0017.00-20.00≤1.0≤1.0Bal.
    Table 1. Chemical composition of SLM GH3536 specimen (mass fraction, %)
    SpecimenDirectionTensile propertyStress-rupture property
    UTS/MPaYS/MPaEL/%RA/%Duration /hEL/%
    Specimen AL7233904157397
    T7844012930115
    Specimen BL72130644443519
    T74431440373520
    Industry standard[1]690275302410
    Table 2. Room temperature tensile property and high temperature endurance performance of SLM GH3536 alloy
    Jiaqi Xue, Xiaohui Chen, Liming Lei. Effects of Microstructure on Mechanical Properties of GH3536 Alloy Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141401
    Download Citation