• Laser & Optoelectronics Progress
  • Vol. 54, Issue 5, 51205 (2017)
Ma Peiguo1、2、*, Xu Hang1、2, Wang Bingjie1、2, and Wu Guanghui1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.051205 Cite this Article Set citation alerts
    Ma Peiguo, Xu Hang, Wang Bingjie, Wu Guanghui. Simultaneous Detection of Multi-Cable Faults Based on Noise Time-Domain Reflectometry[J]. Laser & Optoelectronics Progress, 2017, 54(5): 51205 Copy Citation Text show less
    References

    [1] Wang Rui. Design of communication cable fault detector[D]. Harbin: Harbin University of Science and Technology, 2011: 1-4.

    [2] Furse C, Haupt R. Down to the wire: aircraft wiring[J]. IEEE Spectrum, 2001, 38(2): 34-39.

    [3] Li Jingxia, Xu Hang, Ma Fuchang. Measuring wire faults using electronic chaotic signal[J]. Journal of Taiyuan University of Technology, 2013, 44(3): 341-343.

    [4] Paulter N G. An assessment on the accuracy of time-domain reflectometry for measuring the characteristic impedance of transmission lines[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(5): 1381-1388.

    [5] Yu Junhui, Dong Yonggui. Counting method for time-of-light measurement and its application in cable fault test[J]. Instrument Technique and Sensor, 2014(3): 101-103.

    [6] Tsai P, Lo C, Chung Y C, et al. Mixed-signal reflectometer for location of faults on aging wiring[J]. IEEE Sensors Journal, 2005, 5(6): 1479-1482.

    [7] Naik S, Furse C M, Farhang-Boroujeny B. Multicarrier reflectometry[J]. IEEE Sensors Journal, 2006, 6(3): 812-818.

    [8] Yan S, Wu S, Wen B. Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(6): 2493-2500.

    [9] Song E, Shin Y J, Stone P E, et al. Detection and location of multiple wiring faults via time-frequency-domain reflectometry[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(1): 131-138.

    [10] Smith P, Furse C, Gunther J. Analysis of spread spectrum time domain reflectometry for wire fault location[J]. IEEE Sensors Journal, 2005, 5(6): 1469-1478.

    [11] Furse C, Smith P, Lo C, et al. Spread spectrum sensors for critical fault location on live wire networks[J]. Structural Control and Health Monitoring, 2005, 12(3): 257-267.

    [12] Xu H, Wang B J, Li J X, et al. Location of wire faults using chaotic signal generated by an improved colpitts oscillator[J]. International Journal of Bifurcation and Chaos, 2014, 24(4): 1450053.

    [13] Xu H, Li J X, Liu L, et al. Chaos time-domain reflectometry for fault location on live wires[J]. Journal of Applied Analysis and Computation, 2015, 5(2): 243-250.

    [14] Zhang J G, Xu H, Wang B J, et al. Wiring fault detection with Boolean-chaos time-domain reflectometry[J]. Nonlinear Dynamics, 2015, 80(1-2): 553-559.

    [15] Li J X, Wang Y C, Ma F C. Experimental demonstration of 1.5 GHz chaos generation using an improved colpitts oscillator[J]. Nonlinear Dynamics, 2013, 72(3): 575-580.

    [16] Wang Guochao, Yan Shuhua, Yang Jun, et al. Theoretical modeling analysis for precise space ranging based on cross-correlation of femtosecond optical frequency comb[J]. Acta Optica Sinica, 2015, 35(4): 0412002.

    [17] Gao Yangyang, Zhou Weining, Lei Lili, et al. Research on polarization characteristic of SLD start-up used in fiber optic gyroscope and its effect[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112302.

    [18] Lin Hong, He Wuguang, Li Weizhong, et al. High power wide spectrum infrared laser source for atmospheric CO2 concentration measurement[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081401.

    [19] Garmatyuk D S, Narayanan R M. ECCM capabilities of an ultrawideband bandlimited random noise imaging radar[J]. IEEE Transactions on Aerospace Electronic Systems, 2002, 38(4): 1243-1255.

    Ma Peiguo, Xu Hang, Wang Bingjie, Wu Guanghui. Simultaneous Detection of Multi-Cable Faults Based on Noise Time-Domain Reflectometry[J]. Laser & Optoelectronics Progress, 2017, 54(5): 51205
    Download Citation