• Chinese Journal of Quantum Electronics
  • Vol. 35, Issue 2, 236 (2018)
Dongmei ZHENG*, Boqi XIAO, Siyu HUANG, and Zongchi WANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2018.02.017 Cite this Article
    ZHENG Dongmei, XIAO Boqi, HUANG Siyu, WANG Zongchi. Influences of built-in electric field and hydrostatic pressure on optical properties of exciton in GaN quantum dots[J]. Chinese Journal of Quantum Electronics, 2018, 35(2): 236 Copy Citation Text show less
    References

    [4] Zheng Dongmei, Wang Zongchi. Ionized acceptor bound exciton states in wurtzite GaN/AlxGa1-xN cylindrical quantum dot[J]. Communications in Theoretical Physics, 2012, 58(1): 151-156.

    [5] Minimala N S, John P A, Chang K Y. Electronic and optical properties of exciton in wurtzite GaN/Ga0.8Al0.2N and ZnO/Zn0.607Mg0.393O strained quantum dots[J]. Journal of Computational and Theoretical Nanoscience, 2014, 11(1): 257-264.

    [6] Lei Shuangying, Shen Bo, Cao Liangyue, et al. Influence of polarization-induced electric field on the wavelength and the absorption coefficient of the intersubband transitions in AlxGa1-xN/GaN double quantum wells[J]. Journal of Applied Physics, 2006, 99(7): 074501.

    [8] Perlin P, Mattos L, Shapiro N A, et al. Reduction of the energy gap pressure coefficient of GaN due to the constraining pressure of the sapphire substrate[J]. Journal of Applied Physics, 1999, 85(4): 2385-2390.

    [9] Bardyszewski W, Lepkowski S P. Pressure-dependent reordering of valence band states in GaN/AlxGa1-xN quantum wells[J]. Physical Review B, 2012, 85: 035318.

    [10] epkowski S P, Majewski J A, Jurczak G. Nonlinear elasticity in III-V compounds: Ab initio calculations[J]. Physical Review B, 2005, 72(24): 245201.

    [11] epkowski S P, Majewski J A. Effect of electromechanical coupling on the pressure coefficient of light emission in group-III nitride quantum wells and superlattices[J]. Physical Review B, 2006, 74(3): 035336.

    [13] Abouelaoualim D, Elkadadra A, Oueriagli A, et al. Absorption coefficients of GaN/AlxGa1-xN core-shell spherical quantum dot[J]. Journal of Nano-and Electronic Physics, 2012, 4(3): 03004.

    [14] Minimala N S, John P A, Chang K Y. Pressure-induced non-linear optical properties in a wurtzite GaN/AlxGa1-xN strained quantum dot[J]. Phase Transitions, 2013, 8(8): 824-837.

    [15] Minimala N S, John P A, Chang K Y. Magnetic field induced non-linear optical properties in a strained wurtzite GaN/AlxGa1-xN quantum dot: Effect of internal fields[J]. Superlattices and Microstructures, 2013, 60: 148-159.

    [17] Xia Congxin, Wei Shuyi, Zhao Xu. Built-in electric field effect on hydrogenic impurity in wurtzite GaN/AlGaN quantum dot[J]. Applied Surface Science, 2007, 253: 5345-5348.

    [18] Shi Junjie, Gan Zizhao. Effects of piezoelectricity an d spontaneous polarization on localized excitons in self-formed InGaN quantum dots[J]. Journal of Applied Physics, 2003, 94(1): 407-415.

    [19] epkowski S P, Majewski J A, Jurczak G. Nonlinear elasticity in III-N compounds: Ab initio calaulations[J]. Physical Review B, 2005, 72: 245201.

    [20] Wan Shoupu, Xia Jianbai, Chang Kai. Effects of piezoelectricity and spontaneous polarization on electronic and optical properties of wurtzite III-V nitride quantum wells[J]. Journal of Applied Physics, 2001, 90(12): 6210-6217.

    [21] Bryant G W. Excitons in quantum boxes: Correlation effects and quantum confinement[J]. Physical Review B, 1998, 37(15): 8763-8772.

    [22] epkowski S P, Majewski J A. Effect of electromechanical coupling on the pressure coefficient of light emission in group-III nitride quantum wells and superlattices[J]. Physical Review B, 2006, 74: 035336.

    [23] Rsch F, Weis O. Geometric propagation of acoustic phonons in monocrystals within anisotropic continuum acoustics[J]. Zeitschrift für Physik B, 1976, 25: 101-114.

    [24] Wagner J M, Bechstedt F. Properties of strained wurtzite GaN and AlN: Ab initio studies[J]. Physical Review B, 2002, 66: 115202.

    [25] Shan W, Hauenstein R J, Fischer A J, et al. Strain effects on excitonic transitions in GaN: Deformation potentials[J]. Physical Review B, 1996, 54(19): 13460-13463.

    [26] Lee S R, Wright A F, Crawford M H, et al. The band-gap bowing of AlxGa1-xN alloys[J]. Applied Physics Letters, 1999, 74(22): 3344-3346.

    [27] Eshghi H. The effect of hydrostatic pressure on material parameters and electrical transport properties in bulk GaN[J]. Physical Letter A, 2009, 373: 1773-1776.

    [28] Williams D P, Andreev A D, O′Reilly E P, et al. Derivation of built-in polarization potentials in nitride-based semiconductor quantum dots[J]. Physical Review B, 2005, 72: 235318.

    [29] Zheng Dongmei, Wang Zongchi, Xiao Boqi. Effects of hydrostatic pressure on ionized donor bound exciton states in strained wurtzite GaN/AlxGa1-xN cylindrical quantum dots[J]. Physica B, 2012, 407: 4160-4167.

    [30] Miller D A B, Chemla D S, Damen T C. Electric field dependence of optical absorption near the band gap of quantum-well structures[J]. Physical Review B, 1985, 32(2): 1043-1060.

    [31] Liang Shijun, Xie Wenfang. Effects of the hydrostatic pressure and temperature on optical properties of a hydrogenic impurity in the disc-shaped quantum dot[J]. Physica B, 2011, 406: 2224-2230.

    [32] Wei Suhuai, Zunger A. Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends[J]. Physical Review B, 1999, 60(8): 5404-5411.

    [33] Perlin P, Gorczyca I, Suski T, et al. Band structure and refractive index of gallium nitride under pressure[J]. Acta Physica Polonica A, 1991, 80: 421-424.

    [35] Cheng Tairong, Xie Weifang, Liang Shijun. Nonlinear optical properties of the wurtzite InGaN/AlGaN parabolic quantum dot[J]. NANO: Brief Reports and Reviews, 2013, 8(2): 1350019.

    ZHENG Dongmei, XIAO Boqi, HUANG Siyu, WANG Zongchi. Influences of built-in electric field and hydrostatic pressure on optical properties of exciton in GaN quantum dots[J]. Chinese Journal of Quantum Electronics, 2018, 35(2): 236
    Download Citation