• Laser & Optoelectronics Progress
  • Vol. 58, Issue 18, 1811004 (2021)
Yuhong Wan*, Chao Liu, Tianlong Man, Mengjing Jian, Teng Ma, Qin Zhang, and Yi Qin
Author Affiliations
  • School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/LOP202158.1811004 Cite this Article Set citation alerts
    Yuhong Wan, Chao Liu, Tianlong Man, Mengjing Jian, Teng Ma, Qin Zhang, Yi Qin. Incoherent Correlation Digital Holography: Principle, Development, and Applications[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811004 Copy Citation Text show less
    References

    [1] Mertz L, Young N O. Fresnel transform of images[C]. //Proceeding of the International Conference on Optical Instruments and Techniques, 1961, Chapman Hall, London. [S.l.:s.n.], 305-310(1961).

    [2] Rogers G L. Gabor diffraction microscopy: the hologram as a generalized zone-plate[J]. Nature, 166, 237(1950).

    [3] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [4] Lohmann A W. Wavefront reconstruction for incoherent objects[J]. Journal of the Optical Society of America, 55, 1555-1556(1965).

    [5] Cochran G. New method of making Fresnel transforms with incoherent light[J]. Journal of the Optical Society of America, 56, 1513-1517(1966).

    [6] Stroke G W, Restrick R C. Holography with spatially noncoherent light[J]. Applied Physics Letters, 7, 229-231(1965).

    [7] Leith E N, Upatnieks J. Holography with achromatic-fringe systems[J]. Journal of the Optical Society of America, 57, 975-980(1967).

    [8] Kim S G, Lee B, Kim E S. Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram[J]. Applied Optics, 36, 4784-4791(1997).

    [9] Kim S G, Lee B, Kim E S et al. Resolution analysis of incoherent triangular holography[J]. Applied Optics, 40, 4672-4678(2001).

    [10] Kim S G. Synthesis and analysis of optical transfer function of the modified triangular interferometer by two-pupil synthesis method[J]. Journal of the Optical Society of Korea, 8, 182-187(2004).

    [11] Kim S G, Ryeom J. Phase error analysis of incoherent triangular holography[J]. Applied Optics, 48, H231-H237(2009).

    [12] Kim S G. Analysis of effect of phase error sources of polarization components in incoherent triangular holography[J]. Journal of the Optical Society of Korea, 16, 256-262(2012).

    [13] Poon T C. Scanning holography and two-dimensional image processing by acousto-optic two-pupil synthesis[J]. Journal of the Optical Society of America A, 2, 521-527(1985).

    [14] Schilling B W, Poon T C, Indebetouw G et al. Three-dimensional holographic fluorescence microscopy[J]. Optics Letters, 22, 1506-1508(1997).

    [15] Indebetouw G, Zhong W. Scanning holographic microscopy of three-dimensional fluorescent specimens[J]. Journal of the Optical Society of America A, 23, 1699-1707(2006).

    [16] Poon T C. Optical scanning holography: a review of recent progress[J]. Journal of the Optical Society of Korea, 13, 406-415(2009).

    [17] Shaked N T, Katz B, Rosen J. Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods[J]. Applied Optics, 48, H120-H136(2009).

    [18] Rivenson Y, Stern A, Rosen J. Compressive multiple view projection incoherent holography[J]. Optics Express, 19, 6109-6118(2011).

    [19] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Optics Letters, 32, 912-914(2007).

    [20] Rosen J, Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy[J]. Nature Photonics, 2, 190-195(2008).

    [21] Vijayakumar A, Kashter Y, Kelner R et al. Coded aperture correlation holography: a new type of incoherent digital holograms[J]. Optics Express, 24, 12430-12441(2016).

    [22] Vijayakumar A, Rosen J. Interferenceless coded aperture correlation holography: a new technique for recording incoherent digital holograms without two-wave interference[J]. Optics Express, 25, 13883-13896(2017).

    [23] Rosen J, Siegel N, Brooker G. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging[J]. Optics Express, 19, 26249-26268(2011).

    [24] Rosen J, Kelner R. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems[J]. Optics Express, 22, 29048-29066(2014).

    [25] Brooker G, Siegel N, Rosen J et al. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens[J]. Optics Letters, 38, 5264-5267(2013).

    [26] Siegel N, Lupashin V, Storrie B et al. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers[J]. Nature Photonics, 10, 802-808(2016).

    [27] Quan X, Matoba O, Awatsuji Y. Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings[J]. Optics Letters, 42, 383-386(2017).

    [28] Kashter Y, Rosen J. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture[J]. Optics Express, 22, 20551-20565(2014).

    [29] Kashter Y, Vijayakumar A, Miyamoto Y et al. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination[J]. Optics Letters, 41, 1558-1561(2016).

    [30] Jeon P, Kim J, Lee H et al. Comparative study on resolution enhancements in fluorescence-structured illumination Fresnel incoherent correlation holography[J]. Optics Express, 29, 9231-9241(2021).

    [31] Kelner R, Katz B, Rosen J. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system[J]. Optica, 1, 70-74(2014).

    [32] Siegel N, Brooker G. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy[J]. Optics Express, 22, 22298-22307(2014).

    [33] Rai M R, Rosen J. Resolution-enhanced imaging using interferenceless coded aperture correlation holography with sparse point response[J]. Scientific Reports, 10, 5033(2020).

    [34] Lai X M, Zhao Y, Lü X H et al. Fluorescence holography with improved signal-to-noise ratio by near image plane recording[J]. Optics Letters, 37, 2445-2447(2012).

    [35] Wan Y H, Man T L, Chen H et al. Effect of wavefront properties on numerical aperture of Fresnel hologram in incoherent holographic microscopy[J]. Chinese Physics Letters, 31, 044203(2014).

    [36] Siegel N, Rosen J, Brooker G. Faithful reconstruction of digital holograms captured by FINCH using a Hamming window function in the Fresnel propagation[J]. Optics Letters, 38, 3922-3925(2013).

    [37] Nobukawa T, Katano Y, Muroi T et al. Sampling requirements and adaptive spatial averaging for incoherent digital holography[J]. Optics Express, 27, 33634-33651(2019).

    [38] Choi K H, Yim J, Min S W. Optical defocus noise suppressing by using a pinhole-polarizer in Fresnel incoherent correlation holography[J]. Applied Optics, 56, F121-F127(2017).

    [39] Man T L, Wan Y H, Wu F et al. Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio[J]. Applied Optics, 56, F91-F96(2017).

    [40] Vijayakumar A, Kashter Y, Kelner R et al. Coded aperture correlation holography system with improved performance[J]. Applied Optics, 56, F67-F77(2017).

    [41] Rosen J, Vijayakumar A, Rai M R et al. Review of 3D imaging by coded aperture correlation holography (COACH)[J]. Applied Sciences, 9, 605(2019).

    [42] Rai M R, Rosen J. Noise suppression by controlling the sparsity of the point spread function in interferenceless coded aperture correlation holography (I-COACH)[J]. Optics Express, 27, 24311-24323(2019).

    [43] Wan Y H, Liu C, Ma T et al. Incoherent coded aperture correlation holographic imaging with fast adaptive and noise-suppressed reconstruction[J]. Optics Express, 29, 8064-8075(2021).

    [44] Liu C, Man T L, Wan Y H. Optimized reconstruction with noise suppression for interferenceless coded aperture correlation holography[J]. Applied Optics, 59, 1769-1774(2020).

    [45] Bouchal P, Bouchal Z. Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams[J]. Journal of the European Optical Society, 8, 13011(2013).

    [46] Imbe M. Optical configuration with fixed transverse magnification for self-interference incoherent digital holography[J]. Applied Optics, 57, 2268-2276(2018).

    [47] Tang M Y, Wu M T, Zang R H et al. Fresnel incoherent digital holography with large field-of-view[J]. Acta Physica Sinica, 68, 104204(2019).

    [48] Kelner R, Rosen J. Spatially incoherent single channel digital Fourier holography[J]. Optics Letters, 37, 3723-3725(2012).

    [49] Kelner R, Rosen J, Brooker G. Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference[J]. Optics Express, 21, 20131-20144(2013).

    [50] Tahara T, Kozawa Y, Ishii A et al. Two-step phase-shifting interferometry for self-interference digital holography[J]. Optics Letters, 46, 669-672(2021).

    [51] Man T L, Wan Y H, Wu F et al. Four-dimensional tracking of spatially incoherent illuminated samples using self-interference digital holography[J]. Optics Communications, 355, 109-113(2015).

    [52] Nobukawa T, Muroi T, Katano Y et al. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings[J]. Optics Letters, 43, 1698-1701(2018).

    [53] Sakamaki S, Yoneda N, Nomura T. Single-shot in-line Fresnel incoherent holography using a dual-focus checkerboard lens[J]. Applied Optics, 59, 6612-6618(2020).

    [54] Liang D, Zhang Q, Wang J et al. Single-shot Fresnel incoherent digital holography based on geometric phase lens[J]. Journal of Modern Optics, 67, 92-98(2020).

    [55] Kumar M, Vijayakumar A, Rosen J. Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses[J]. Scientific Reports, 7, 11555(2017).

    [56] Rai M R, Vijayakumar A, Rosen J. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH)[J]. Optics Express, 26, 18143-18154(2018).

    [57] Rai M R, Vijayakumar A, Rosen J. Extending the field of view by a scattering window in an I-COACH system[J]. Optics Letters, 43, 1043-1046(2018).

    [58] Rai M R, Rosen J. Depth-of-field engineering in coded aperture imaging[J]. Optics Express, 29, 1634-1648(2021).

    [59] Kim M K. Adaptive optics by incoherent digital holography[J]. Optics Letters, 37, 2694-2696(2012).

    [60] Man T L, Wan Y H, Yan W J et al. Adaptive optics via self-interference digital holography for non-scanning three-dimensional imaging in biological samples[J]. Biomedical Optics Express, 9, 2614-2626(2018).

    [61] Sheng W, Liu Y W, Shi Y Y et al. Phase-difference imaging based on FINCH[J]. Optics Letters, 46, 2766-2769(2021).

    [62] Siegel N, Brooker G. Single shot holographic super-resolution microscopy[J]. Optics Express, 29, 15953-15968(2021).

    [63] Rosen J, Brooker G. Fluorescence incoherent color holography[J]. Optics Express, 15, 2244-2250(2007).

    [64] Kim M K. Full color natural light holographic camera[J]. Optics Express, 21, 9636-9642(2013).

    [65] Wan Y H, Man T L, Wang D Y. Incoherent off-axis Fourier triangular color holography[J]. Optics Express, 22, 8565-8573(2014).

    [66] Hara T, Tahara T, Ichihashi Y et al. Multiwavelength-multiplexed phase-shifting incoherent color digital holography[J]. Optics Express, 28, 10078-10089(2020).

    [67] Tahara T, Koujin T, Matsuda A et al. Incoherent color digital holography with computational coherent superposition for fluorescence imaging[J]. Applied Optics, 60, A260-A267(2021).

    [68] Yang J Y, Dong H, Xing F L et al. Single-molecule localization super-resolution microscopy and its applications[J]. Laser & Optoelectronics Progress, 58, 1200001(2021).

    [69] Li Y Z, Li C K, Hao X et al. Review and prospect for single molecule localization microscopy[J]. Laser & Optoelectronics Progress, 57, 240002(2020).

    [70] Yanagawa T, Abe R, Hayasaki Y. Three-dimensional mapping of fluorescent nanoparticles using incoherent digital holography[J]. Optics Letters, 40, 3312-3315(2015).

    [71] Marar A, Kner P. Three-dimensional nanoscale localization of point-like objects using self-interference digital holography[J]. Optics Letters, 45, 591-594(2020).

    [72] Marar A, Kner P. Fundamental precision bounds for three-dimensional optical localization microscopy using self-interference digital holography[J]. Biomedical Optics Express, 12, 20-40(2021).

    [73] Rosen J, Vijayakumar A, Kumar M et al. Recent advances in self-interference incoherent digital holography[J]. Advances in Optics and Photonics, 11, 1-66(2019).

    [74] Bulbul A, Vijayakumar A, Rosen J. Partial aperture imaging by systems with annular phase coded masks[J]. Optics Express, 25, 33315-33329(2017).

    [75] Dubey N, Rosen J, Gannot I. High-resolution imaging system with an annular aperture of coded phase masks for endoscopic applications[J]. Optics Express, 28, 15122-15137(2020).

    [76] Bulbul A, Rosen J. Partial aperture imaging system based on sparse point spread holograms and nonlinear cross-correlations[J]. Scientific Reports, 10, 21983(2020).

    [77] Mukherjee S, Vijayakumar A, Kumar M et al. 3D imaging through scatterers with interferenceless optical system[J]. Scientific Reports, 8, 1134(2018).

    [78] Vijayakumar A, Rosen J. Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens[J]. Optics Letters, 42, 947-950(2017).

    Yuhong Wan, Chao Liu, Tianlong Man, Mengjing Jian, Teng Ma, Qin Zhang, Yi Qin. Incoherent Correlation Digital Holography: Principle, Development, and Applications[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811004
    Download Citation