• Chinese Journal of Lasers
  • Vol. 48, Issue 15, 1504001 (2021)
Yidong Tan*, Xin Xu, and Shulian Zhang
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.1504001 Cite this Article Set citation alerts
    Yidong Tan, Xin Xu, Shulian Zhang. Precision Measurement and Applications of Laser Interferometry[J]. Chinese Journal of Lasers, 2021, 48(15): 1504001 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[M]. //Allen L. Essentials of lasers, 134-136(1969).

    [2] Xian Y M, Wang K F. Laser resonator technology and development[J]. Tool Engineering, 37, 68-74(2003).

    [3] Danzmann K, Rüdiger A. LISA technology concept, status, prospects[J]. Classical and Quantum Gravity, 20, S1-S9(2003).

    [4] Hough J, Robertson D, Ward H et al. LISA: the interferometer[J]. Advances in Space Research, 32, 1247-1250(2003).

    [5] Zhu J Q. Shenguang-Ⅱ: high power laser facility[J]. Chinese Journal of Nature, 28, 271-273(2006).

    [6] Moel A. Novel on-axis interferometric alignment method with sub-10 nm precision[J]. Journal of Vacuum Science & Technology B, 11, 2191-2194(1993).

    [7] Chen C G, Heilmann R K, Joo C et al. Beam alignment for scanning beam interference lithography[J]. Journal of Vacuum Science & Technology B, 20, 3071-3074(2002).

    [8] Zhang J H. Application of laser interferometer in improving accuracy of CNC machine tool[J]. Machine Tool & Hydraulics, 39, 114-115(2011).

    [9] Doi H, Kamei M. Heterodyne interferometer: US5305084[P](1994).

    [10] Zhang S L, Ding Y C, Tan Y D. Laser and laser beams[M], 88-90(2020).

    [11] Sutton C M. Non-linearity in length measurement using heterodyne laser Michelson interferometry[J]. Journal of Physics E, 20, 1290-1292(1987).

    [12] Yan L P, Chen B Y, Zhang C et al. Analysis and verification of the nonlinear error resulting from the misalignment of a polarizing beam splitter in a heterodyne interferometer[J]. Measurement Science and Technology, 26, 085006(2015).

    [13] Li J Y, Niu H S, Niu Y X. Laser feedback interferometry and applications: a review[J]. Optical Engineering, 56, 050901(2017).

    [14] Zhang S L, Tan Y D. Orthogonally linearly-polarized lasers and its new application in precision measurement[J]. Opto-Electronic Engineering, 36, 1-11(2009).

    [15] Jin Y Y, Zhang S L, Li Y et al. Zeeman-birefringence He-Ne dual frequency lasers[J]. Chinese Physics Letters, 18, 533-536(2001).

    [16] Wan X J, Li D, Zhang S L. Quasi-common-path laser feedback interferometry based on frequency shifting and multiplexing[J]. Optics Letters., 32, 367-369(2007).

    [17] Wang M. Fourier transform method for self-mixing interference signal analysis[J]. Optics & Laser Technology, 33, 409-416(2001).

    [18] Tao Y F, Xia W, Wang M et al. Integration of polarization-multiplexing and phase-shifting in nanometric two dimensional self-mixing measurement[J]. Optics Express, 25, 2285-2298(2017).

    [19] Zumberge M A. Frequency stability of a Zeeman-stabilized laser[J]. Applied Optics, 24, 1902-1904(1985).

    [20] Cao Y P, Su X Y, Liu X L et al. Frequency stabilization study of commercial He-Ne laser based on lognitudinal Zeeman effect[J]. Laser Journal, 25, 24-25(2004).

    [21] Zhao Y, Zhou T R, Li D C. Heterodyne absolute distance interferometer with a dual-mode HeNe laser[J]. Proceedings of SPIE, 38, 246-249(1999).

    [23] Mao W, Zhang S L. Experimental and theoretical study of displacement measurement based on frequency modulation optical feedback in a birefringence dual frequency laser[J]. Acta Physica Sinica, 56, 1409-1414(2007).

    [24] Huang K Q. Research on dual-source locked dual-frequency laser[D], 28-30(2017).

    [25] Zhang S L. Principles of orthogonally polarized laser[M], 84-87(2005).

    [26] Ren L B, Ding Y C, Zhou L F et al. Mid-frequency difference He-Ne Z-B laser with elastic force-exerting and its frequency stabilization[J]. Infrared and Laser Engineering, 37, 814-817, 825(2008).

    [27] Zhou L F, Zhang S L, Huang Y et al. Zeeman-birefringence He-Ne dual-frequency lasers based on hole-drilling birefringence in a cavity mirror[J]. Laser Physics, 18, 1517-1521(2008).

    [28] Zhu S S, Zhang S L, Liu W X et al. Laser-micro-engraving method to modify frequency difference of two-frequency HeNe lasers[J]. Acta Physica Sinica, 63, 064201(2014).

    [29] Tian Z G, Zhang L, Zhang S L. Isocandela points frequency stabilization in He-Ne Zeeman-birefringence dual-frequency lasers[J]. Infrared and Laser Engineering, 45, 505001(2016).

    [30] Hou W M, Zhao X B. Drift of nonlinearity in the heterodyne interferometer[J]. Precision Engineering, 16, 25-35(1994).

    [31] Hou W M, Zhang Y B, Le Y F et al. Elimination of the nonlinearity of heterodyne displacement interferometers[J]. Chinese Journal of Lasers, 39, 0908006(2012).

    [32] Hou W M, Wilkening G. Investigation and compensation of the nonlinearity of heterodyne interferometers[J]. Precision Engineering, 14, 91-98(1992).

    [33] Yang Y, Deng Y, Tan Y D et al. Nonlinear error analysis and experimental measurement of Birefringence-Zeeman dual-frequency laser interferometer[J]. Optics Communications, 436, 264-268(2019).

    [35] Taimre T, Nikolić M, Bertling K et al. Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing[J]. Advances in Optics and Photonics, 7, 570-631(2015).

    [36] Otsuka K, Kawai R, Asakawa Y. Ultra-high sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers[C]. //Technical Digest. CLEO/Pacific Rim’99. Pacific Rim Conference on Lasers and Electro-Optics, August 30-September 3, 1999, Seoul, Korea (South)., 66-67(1999).

    [37] Timmermans C J, Schellekens P J, Schram D C. A phase quadrature feedback interferometer using a two-mode He-Ne laser[J]. Journal of Physics E, 11, 1023-1026(1978).

    [38] Besnard P, Jia X L, Dalgliesh R et al. Polarization switching in a microchip Nd∶YAG laser using polarized feedback[J]. Journal of the Optical Society of America B, 10, 1605-1609(1993).

    [39] Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 16, 347-355(1980).

    [40] King P G R, Steward G J. Metrology with an optical maser[J]. New Scientist, 17, 180-182(1963).

    [41] Otsuka K. Effects of external perturbations on LiNdP4O12 lasers[J]. IEEE Journal of Quantum Electronics, 15, 655-663(1979).

    [42] Lacot E, Day R, Stoeckel F. Coherent laser detection by frequency-shifted optical feedback[J]. Physical Review A, 64, 043815(2001).

    [43] Lacot E, Hugon O. Phase-sensitive laser detection by frequency-shifted optical feedback[J]. Physical Review A, 70, 053824(2004).

    [44] Tan Y D, Xu C X, Zhang S et al. Power spectral characteristic of a microchip Nd∶YAG laser subjected to frequency-shifted optical feedback[J]. Laser Physics Letters, 10, 025001(2013).

    [45] Tan Y D, Zhang S L, Zhang S et al. Response of microchip solid-state laser to external frequency-shifted feedback and its applications[J]. Scientific Reports, 3, 2912(2013).

    [46] Wang W M, Grattan K T V, Palmer A W et al. Self-mixing interference inside a single-mode diode laser for optical sensing applications[J]. Journal of Lightwave Technology, 12, 1577-1587(1994).

    [47] Zhang S, Tan Y D, Ren Z et al. A microchip laser feedback interferometer with nanometer resolution and increased measurement speed based on phase meter[J]. Applied Physics B, 116, 609-616(2014).

    [48] Zhang S H, Zhang S L, Tan Y D et al. Self-mixing interferometry with mutual independent orthogonal polarized light[J]. Optics Letters, 41, 844-846(2016).

    [49] Zhang S H, Zhang S L, Tan Y D et al. Common-path heterodyne self-mixing interferometry with polarization and frequency multiplexing[J]. Optics Letters, 41, 4827-4830(2016).

    [50] Zhang S H, Zhang S L, Sun L Q et al. Fiber self-mixing interferometer with orthogonally polarized light compensation[J]. Optics Express, 24, 26558-26564(2016).

    [51] Xu L, Tan Y D, Zhang S L. Full path compensation laser feedback interferometry for remote sensing with recovered nanometer resolutions[J]. The Review of Scientific Instruments, 89, 033108(2018).

    [52] Zhu K Y, Guo B, Lu Y Y et al. Single-spot two-dimensional displacement measurement based on self-mixing interferometry[J]. Optica, 4, 729-735(2017).

    [53] Otsuka K. Self-mixing thin-slice solid-state laser Doppler velocimetry with much less than one feedback photon per Doppler cycle[J]. Optics Letters, 40, 4603-4606(2015).

    [54] Otsuka K, Abe K, Ko J Y et al. Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser[J]. Optics Letters, 27, 1339-1341(2002).

    [55] Abe K, Otsuka K, Ko J Y. Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction[J]. New Journal of Physics, 5, 8(2003).

    [56] Sudo S, Ohtomo T, Otsuka K. Observation of motion of colloidal particles undergoing flowing Brownian motion using self-mixing laser velocimetry with a thin-slice solid-state laser[J]. Applied Optics, 54, 6832-6840(2015).

    [57] Sudo S, Miyasaka Y, Nemoto K et al. Detection of small particles in fluid flow using a self-mixing laser[J]. Optics Express, 15, 8135-8145(2007).

    [58] Ohtomo T, Sudo S, Otsuka K. Detection and counting of a submicrometer particle in liquid flow by self-mixing microchip Yb∶YAG laser velocimetry[J]. Applied Optics, 55, 7574-7582(2016).

    [59] Szwaj C, Lacot E, Hugon O. Large linewidth-enhancement factor in a microchip laser[J]. Physical Review A, 70, 033809(2004).

    [60] Zhang S H, Zhang S L, Sun L Q et al. Spectrum broadening in optical frequency-shifted feedback of microchip laser[J]. IEEE Photonics Technology Letters, 28, 1593-1596(2016).

    [61] Xu L, Zhang S L, Tan Y D et al. Simultaneous measurement of refractive-index and thickness for optical materials by laser feedback interferometry[J]. The Review of Scientific Instruments, 85, 083111(2014).

    [62] Xu L, Zhang S L, Tan Y D et al. Refractive index measurement of liquids by double-beam laser frequency-shift feedback[J]. IEEE Photonics Technology Letters, 28, 1049-1052(2016).

    [63] Lacot E, Day R, Stoeckel F. Laser optical feedback tomography[J]. Optics Letters, 24, 744-746(1999).

    [64] Tan Y D, Wang W P, Xu C X et al. Laser confocal feedback tomography and nano-step height measurement[J]. Scientific Reports, 3, 2971(2013).

    [65] Xu C X, Zhang S L, Tan Y D et al. Inner structure detection by optical tomography technology based on feedback of microchip Nd∶YAG lasers[J]. Optics Express, 21, 11819-11826(2013).

    [66] Bertling K, Perchoux J, Taimre T et al. Imaging of acoustic fields using optical feedback interferometry[J]. Optics Express, 22, 30346-30356(2014).

    [67] Wang W P, Tan Y D, Zhang S L et al. Microstructure measurement based on frequency-shift feedback in a-cut Nd∶YVO4 laser[J]. Chinese Optics Letters, 13, 121201(2015).

    [68] Zhou B R, Wang Z H, Shen X J et al. High-sensitivity laser confocal tomography based on frequency-shifted feedback technique[J]. Optics and Lasers in Engineering, 129, 106059(2020).

    [69] Otsuka K. Highly sensitive measurement of Doppler-shift with a microchip solid-state laser[J]. Japanese Journal of Applied Physics, 31, L1546-L1548(1992).

    [71] Wang Y F, Li Y H, Xu X et al. All-fiber laser feedback interferometry with 300 m transmission distance[J]. Optics Letters, 46, 821-824(2021).

    [72] Prakash S, Singh S, Rana S. Automated small tilt-angle measurement using Lau interferometry[J]. Applied Optics, 44, 5905-5909(2005).

    [73] Ignat’ev E B. A universal angle-measuring instrument[J]. Measurement Techniques, 49, 857-860(2006).

    [74] Chatterjee S, Kumar Y P. Measurement of two-dimensional small angle deviation with a prism interferometer[J]. Applied Optics, 47, 4900-4906(2008).

    [75] Nakajima H, Sumi K, Inujima H. High-precision absolute rotary angular measurement by using a multielectrode circular position-sensitive detector[J]. IEEE Transactions on Instrumentation and Measurement, 59, 3041-3048(2010).

    [76] Zhang S, Tan Y D, Zhang S L. Non-contact angle measurement based on parallel multiplex laser feedback interferometry[J]. Chinese Physics B, 23, 114202(2014).

    [77] Xu Z, Li J Y, Zhang S L et al. Remote eavesdropping at 200 meters distance based on laser feedback interferometry with single-photon sensitivity[J]. Optics and Lasers in Engineering, 141, 106562(2021).

    [78] Ince R, Hüseyinoglu E. Decoupling refractive index and geometric thickness from interferometric measurements of a quartz sample using a fourth-order polynomial[J]. Applied Optics, 46, 3498-3503(2007).

    [79] Harris J, Lu P, Larocque H et al. Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation[J]. Optics Express, 21, 9996-10009(2013).

    [80] Cennamo N, Zeni L, Catalano E et al. Refractive index sensing through surface plasmon resonance in light-diffusing fibers[J]. Applied Sciences, 8, 1172(2018).

    [81] Xu L, Tan Y D, Zhang S L et al. Measurement of refractive index ranging from 1.42847 to 2.48272 at 1064 nm using a quasi-common-path laser feedback system[J]. Chinese Physics Letters, 32, 090701(2015).

    [82] Zheng F S, Ding Y C, Tan Y D et al. The approach of compensation of air refractive index in thermal expansion coefficients measurement based on laser feedback interferometry[J]. Chinese Physics Letters, 32, 070702(2015).

    [83] Zheng F S, Tan Y D, Lin J et al. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry[J]. The Review of Scientific Instruments, 86, 043109(2015).

    [84] Lacot E, Day R, Pinel J et al. Laser relaxation-oscillation frequency imaging[J]. Optics Letters, 26, 1483-1485(2001).

    [85] Hugon O, Joud F, Lacot E et al. Coherent microscopy by laser optical feedback imaging (LOFI) technique[J]. Ultramicroscopy, 111, 1557-1563(2011).

    [86] Mowla A, Du B W, Taimre T et al. Confocal laser feedback tomography for skin cancer detection[J]. Biomedical Optics Express, 8, 4037-4048(2017).

    [87] Girardeau V, Jacquin O, Hugon O et al. Ultrasound vibration measurements based on laser optical feedback imaging[J]. Applied Optics, 57, 7634-7643(2018).

    [88] Tan Y D, Zhang S L, Xu C X et al. Inspecting and locating foreign body in biological sample by laser confocal feedback technology[J]. Applied Physics Letters, 103, 101909(2013).

    [89] Zhu K Y, Lu Y Y, Zhang S L et al. Ultrasound modulated laser confocal feedback imaging inside turbid media[J]. Optics Letters, 43, 1207-1210(2018).

    [90] Zhu K Y, Zhou B R, Lu Y Y et al. Ultrasound-modulated laser feedback tomography in the reflective mode[J]. Optics Letters, 44, 5414-5417(2019).

    [91] Zhang S L, Tan Y D. Third-generation laser interferometer: breakthrough in solid-state microchip laser self-mixing measurement technology[J]. Metrology & Measurement Technology, 38, 43-59(2018).

    [92] Zhang Y Q, Zhang S, Deng Y et al. Nd∶YAG microchip laser feedback interferometer[J]. Chinese Journal of Lasers, 40, 0302002(2013).

    [93] Zhang S L, Liu W X. The wind rises at the duckweed tips, the wave ripples between water gratings: rambling of system establishing of lasers resonance instruments[J]. Infrared and Laser Engineering, 45, 703001(2016).

    [94] Zhang S L. Physical characteristics of orthogonally polarized dual frequency laser by cavity tuning[J]. Laser & Optoelectronics Progress, 48, 051401(2011).

    Yidong Tan, Xin Xu, Shulian Zhang. Precision Measurement and Applications of Laser Interferometry[J]. Chinese Journal of Lasers, 2021, 48(15): 1504001
    Download Citation