• Photonics Research
  • Vol. 12, Issue 7, 1583 (2024)
Lei Hou1,2,*, Junnan Wang2, Qihui He1, Suguo Chen1..., Lei Yang2, Sunchao Huang3,4 and Wei Shi1,5|Show fewer author(s)
Author Affiliations
  • 1Department of Physics, Xi’an University of Technology, Xi’an 710048, China
  • 2School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China
  • 3School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 610101, Singapore
  • 4e-mail: sh676@uowmail.edu.au
  • 5e-mail: swshi@mail.xaut.edu.cn
  • show less
    DOI: 10.1364/PRJ.525994 Cite this Article Set citation alerts
    Lei Hou, Junnan Wang, Qihui He, Suguo Chen, Lei Yang, Sunchao Huang, Wei Shi, "Utilizing quantum coherence in Cs Rydberg atoms for high-sensitivity room-temperature terahertz detection: a theoretical exploration," Photonics Res. 12, 1583 (2024) Copy Citation Text show less
    References

    [1] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26-33(2002).

    [2] L. Hou, J. Wang, H. Wang. Experimental detection and simulation of terahertz spectra of aqueous L-arginine. Biosensors, 12, 1029(2022).

    [3] G. Liu, C. Chang, Z. Qiao. Myelin sheath as a dielectric waveguide for signal propagation in the mid-infrared to terahertz spectral range. Adv. Funct. Mater., 29, 1807862(2019).

    [4] W. Shi, Y. Wang, L. Hou. Detection of living cervical cancer cells by transient terahertz spectroscopy. J. Biophotonics, 14, e202000237(2021).

    [5] L. Hou, W. Shi, C. Dong. Probing trace lactose from aqueous solutions by terahertz time-domain spectroscopy. Spectrochim. Acta A, 246, 119044(2021).

    [6] Y. Liu, H. Liu, M. Tang. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv., 9, 9354-9363(2019).

    [7] J. F. Federici, B. Schulkin, F. Huang. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol., 20, S266(2005).

    [8] J. Federici, L. Moeller. Review of terahertz and subterahertz wireless communications. J. Appl. Phys., 107, 111101(2010).

    [9] R. A. Lewis. A review of terahertz detectors. J. Phys. D, 52, 433001(2019).

    [10] S. Kono, M. Tani, P. Gu. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses. Appl. Phys. Lett., 77, 4104-4106(2000).

    [11] W. Shi, Z. Wang, C. Li. New antenna for detecting polarization states of terahertz. Front. Phys., 10, 850770(2022).

    [12] N. T. Yardimci, M. Jarrahi. Nanostructure-enhanced photoconductive terahertz emission and detection. Small, 14, 1802437(2018).

    [13] S. Preu, M. Mittendorff, S. Winnerl. THz autocorrelators for ps pulse characterization based on Schottky diodes and rectifying field-effect transistors. IEEE Trans. Terahertz Sci. Technol., 5, 922-929(2015).

    [14] S. P. Han, H. Ko, J. W. Park. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner. Opt. Express, 21, 25874-25882(2013).

    [15] L. Hou, H. Park, X. C. Zhang. Terahertz wave imaging system based on glow discharge detector. IEEE J. Sel. Top. Quantum Electron., 17, 177-182(2011).

    [16] L. Hou, C. Chai, Z. Wang. Terahertz radiation detection using glow discharge detectors by electrical and optical modes. IEEE Trans. Electron Devices, 68, 5179-5183(2021).

    [17] L. Hou, Y. Wang, J. Wang. Theoretical study on characteristics of glow discharged neon gas and its interaction with terahertz waves. Front. Phys., 9, 751335(2021).

    [18] X. He, N. Fujimura, J. M. Lloyd. Carbon nanotube terahertz detector. Nano Lett., 14, 3953-3958(2014).

    [19] D. Coquillat, J. Marczewski, P. Kopyt. Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction. Opt. Express, 24, 272-281(2016).

    [20] H. Qin, J. Sun, Z. He. Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling. Carbon, 121, 235-241(2017).

    [21] X. G. Guo, J. C. Cao, R. Zhang. Recent progress in terahertz quantum-well photodetectors. IEEE J. Sel. Top. Quantum Electron., 19, 8500508(2013).

    [22] F. F. Sizov, A. Rogalski. Semiconductor superlattices and quantum wells for infrared optoelectronics. Prog. Quantum Electron., 17, 93-164(1993).

    [23] O. Astafiev, S. Komiyama, T. Kutsuwa. Single-photon detector in the microwave range. Appl. Phys. Lett., 80, 4250-4252(2002).

    [24] C. Wu, W. Zhou, N. Yao. Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector. Appl. Phys. Express, 12, 052013(2019).

    [25] X. Zhao, Y. Wang, J. Schalch. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers. ACS Photonics, 6, 830-837(2019).

    [26] D. R. Denison, M. E. Knotts, M. E. McConney. Experimental characterization of mm-wave detection by a micro-array of Golay cells. Proc. SPIE, 7309, 73090J(2009).

    [27] R. Müller, B. Gutschwager, J. Hollandt. Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz. J. Infrared Millim. Terahertz Waves, 36, 654-661(2015).

    [28] J. A. Russer, C. Jirauschek, G. P. Szakmany. High-speed antenna-coupled terahertz thermocouple detectors and mixers. IEEE Trans. Microw. Theory Tech., 63, 4236-4246(2015).

    [29] C. L. Degen, F. Reinhard, P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89, 035002(2017).

    [30] D. A. Anderson, S. A. Miller, G. Raithel. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell. Phys. Rev. Appl., 5, 034003(2016).

    [31] B. Wood, H. Bettin. The Planck constant for the definition and realization of the kilogram. Ann. Phys., Lpz., 531, 1800308(2019).

    [32] A. K. Mohapatra, T. R. Jackson, C. S. Adams. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett., 98, 113003(2007).

    [33] M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys., 77, 633-673(2005).

    [34] A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin. Electromagnetically induced absorption in a four-state system. Phys. Rev. A, 61, 011802(1999).

    [35] K. Y. Liao, H. T. Tu, S. Z. Yang. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms. Phys. Rev. A, 101, 053432(2020).

    [36] J. A. Sedlacek, A. Schwettmann, H. Kübler. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys., 8, 819-824(2012).

    [37] C. L. Holloway, M. T. Simons, J. A. Gordon. Electric field metrology for Si traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor. J. Appl. Phys., 121, 233106(2017).

    [38] M. Jing, Y. Hu, J. Ma. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys., 16, 911-915(2020).

    [39] S. Chen, D. J. Reed, A. R. MacKellar. Terahertz electrometry via infrared spectroscopy of atomic vapor. Optica, 9, 485-491(2022).

    [40] L. A. Downes, A. R. MacKellar, D. J. Whiting. Full-field terahertz imaging at kilohertz frame rates using atomic vapor. Phys. Rev. X, 10, 011027(2020).

    [41] C. G. Wade, N. Šibalić, N. R. de Melo. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photonics, 11, 40-43(2017).

    [42] Y. Zhou, R. Peng, J. Zhang. Theoretical investigation on the mechanism and law of broadband terahertz wave detection using Rydberg quantum state. IEEE Photonics J., 14, 5931808(2022).

    [43] Y. Oyun, Ö. Çakır, S. Sevinçli. Electromagnetically induced transparency and absorption cross-over with a four-level Rydberg system. J. Phys. B, 55, 145502(2022).

    [44] C. G. Wade. Terahertz Wave Detection and Imaging with a Hot Rydberg Vapour(2018).

    [45] N. Prajapati, N. Bhusal, A. P. Rotunno. Sensitivity comparison of two-photon vs three-photon Rydberg electrometry. J. Appl. Phys., 134, 023101(2023).

    [46] P. R. Berman, V. S. Malinovsky. Principles of Laser Spectroscopy and Quantum Optics(2011).

    [47] D. R. Lide. CRC Handbook of Chemistry and Physics(2004).

    [48] J. R. Johansson, P. D. Nation, F. Nori. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 184, 1234-1240(2013).

    [49] N. Šibalić, J. D. Pritchard, C. S. Adams. ARC: an open-source library for calculating properties of alkali Rydberg atoms. Comput. Phys. Commun., 220, 319-331(2017).

    [50] H. Fan, S. Kumar, J. Sedlacek. Atom based RF electric field sensing. J. Phys. B, 48, 202001(2015).

    Lei Hou, Junnan Wang, Qihui He, Suguo Chen, Lei Yang, Sunchao Huang, Wei Shi, "Utilizing quantum coherence in Cs Rydberg atoms for high-sensitivity room-temperature terahertz detection: a theoretical exploration," Photonics Res. 12, 1583 (2024)
    Download Citation