• Acta Optica Sinica
  • Vol. 38, Issue 2, 0223002 (2018)
Yanling Peng1, Wenrui Xue1、*, Zhuangzhi Wei1, and Changyong Li2
Author Affiliations
  • 1 College of Physics and Electronic Engineering, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/AOS201838.0223002 Cite this Article Set citation alerts
    Yanling Peng, Wenrui Xue, Zhuangzhi Wei, Changyong Li. Analysis of Modes in Graphene-Coated Parallel Dielectric Nanowires[J]. Acta Optica Sinica, 2018, 38(2): 0223002 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005). http://www.nature.com/nature/journal/v438/n7065/abs/nature04233.html?lang=en

    [2] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 332, 1291-1294(2011).

    [3] Huang Z R, Wang L L, Sun B et al. A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface[J]. Journal of Optics, 16, 105004(2014). http://adsabs.harvard.edu/abs/2014JOpt...16j5004H

    [4] Wang X, Zhi L J, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 8, 323-327(2008). http://www.ncbi.nlm.nih.gov/pubmed/18069877

    [5] Tian Z H, Si C F, Qu W S et al. High-performance organic photovoltaics using solution-processed graphene oxide[J]. Acta Optica Sinica, 37, 0416001(2017).

    [6] Wang Y, Shi Z Q, Huang Y et al. Supercapacitor devices based on graphene materials[J]. The Journal of Physical Chemistry C, 113, 13103-13107(2009). http://pubs.acs.org/doi/abs/10.1021/jp902214f

    [7] Lu G H, Ocola L E, Chen J H. Gas detection using low-temperature reduced graphene oxide sheets[J]. Applied Physics Letters, 94, 083111(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4838195

    [8] Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage[J]. Nano Letters, 8, 3166-3170(2008). http://europepmc.org/abstract/MED/18800853

    [9] Geng L, Xie Y N, Yuan Y. Graphene-based antenna with reconfigurable radiation pattern in teraherz[J]. Laser & Optoelectrinics Progress, 54, 031602(2017).

    [10] Liu P H, Zhang X Z, Ma Z H et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 21, 32432-32440(2013). http://www.opticsinfobase.org/abstract.cfm?uri=oe-21-26-32432

    [11] Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies[J]. Physics Review B, 80, 245435(2009). http://www.nanoopt.org/literatureblog/56-graphene/1066-plasmonics-in-graphene-at-infrared-frequencies.html

    [12] Wang B, Zhang X, Yuan X C et al. Optical coupling of surface plasmons between graphene sheets[J]. Applied Physics Letters, 100, 131111(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6176100

    [13] Christensen J, Manjavacas A, Thongrattanasiri S et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 6, 431-440(2012). http://europepmc.org/abstract/med/22147667

    [14] Gao Y X, Ren G B, Zhu B F et al. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 39, 5909-5912(2014). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=214812

    [15] Liu J P, Zhai X, Wang L L et al. Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range[J]. Optics Express, 24, 5376-5386(2016). http://www.ncbi.nlm.nih.gov/pubmed/29092361

    [16] Zhu B F, Ren G B, Gao Y X et al. Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes[J]. Optics Express, 22, 24096-24103(2014). http://europepmc.org/abstract/med/25321984

    [17] Bao Q L, Zhang H, Wang B et al. Broadband graphene polarizer[J]. Nature Photonics, 5, 411-415(2011).

    [18] Liu M, Yin X B, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011). http://www.nature.com/nature/journal/v474/n7349/abs/nature10067.html

    [19] Mueller T, Xia F, Freitag M et al. Role of contacts in graphene transistors: a scanning photocurrent study[J]. Physics Review B, 79, 245430(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000020000001000102000001&idtype=cvips&gifs=Yes

    [20] Bao Q L, Zhang H, Yang J X et al. Graphene-polymer nanofiber membrane for ultrafast photonics[J]. Advanced Functional Materials, 20, 782-791(2010).

    [21] Kim J T, Kim J, Choi H et al. Graphene-based photonic devices for soft hybrid optoelectronic systems[J]. Nanotechnology, 23, 344005(2012). http://europepmc.org/abstract/MED/22885955

    [22] Gao Y X, Ren G B, Zhu B F et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Optics Express, 22, 24322-24331(2014). http://europepmc.org/abstract/med/25322007

    [23] Zhu B F, Ren G B, Yang Y et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 10, 839-845(2015). http://link.springer.com/article/10.1007/s11468-014-9871-4

    [24] Sensale-Rodriguez B. Graphene-based optoelectronics[J]. Journal of Lightwave Technology, 33, 1100-1108(2015).

    [25] Yang J F, Yang J J, Deng W et al. Transmission properties and molecular sensing application of CGPW[J]. Optics Express, 23, 32289-32299(2015). http://europepmc.org/abstract/MED/26699019

    [26] Wijingaard W. Guided normal modes of two parallel circular dielectric rods[J]. Journal of the Optical Society of America, 63, 944-950(1973). http://www.opticsinfobase.org/abstract.cfm?uri=josa-63-8-944

    [27] Wijingaard W. Some normal modes of an infinite hexagonal array of identical circular dielectric rods[J]. Journal of the Optical Society of America, 64, 1136-1144(1974). http://www.opticsinfobase.org/josa/abstract.cfm?uri=josa-64-8-1136

    [28] Huang H S, Chang H C. Analysis of equilateral three-core fibers by circular harmonics expansion method[J]. Journal of Lightwave Technology, 8, 945-952(1990). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=54514

    [29] Lo K M. McPhedran R C, Bassett I M, et al. An electromagnetic theory of dielectric waveguides with multiple embedded cylinders[J]. Journal of Lightwave Technology, 12, 396-410(1994).

    [30] White T P, Kuhlmey B T. McPhedran R C, et al. Multipole method for microstructured optical fibers. Ⅰ. formulation[J]. Journal of the Optical Society of America B, 19, 2322-2330(2002).

    [31] Kuhlmey B T, White T P, Renversez G et al. Multipole method for microstructured optical fibers. Ⅱ. implementation and results[J]. Journal of the Optical Society of America B, 19, 2331-2340(2002). http://mnras.oxfordjournals.org/external-ref?access_num=10.1364/JOSAB.19.002331&link_type=DOI

    [32] Sun S L, Chen H T, Zheng W J et al. Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems[J]. Optics Express, 21, 14591-14605(2013). http://www.ncbi.nlm.nih.gov/pubmed/23787647

    [33] Liu J P, Zhai X, Wang L L et al. Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide[J]. Plasmonics, 11, 703-711(2016). http://link.springer.com/article/10.1007/s11468-015-0095-z

    Yanling Peng, Wenrui Xue, Zhuangzhi Wei, Changyong Li. Analysis of Modes in Graphene-Coated Parallel Dielectric Nanowires[J]. Acta Optica Sinica, 2018, 38(2): 0223002
    Download Citation