• Laser & Optoelectronics Progress
  • Vol. 58, Issue 7, 0714002 (2021)
Qianting Wang1、2、3, Xianbin Zeng1、2、3, Changrong Chen4、*, Guofu Lian4, Xu Huang4, and Yan Wang5
Author Affiliations
  • 1College of Materials Science and Engineering, Fujian University of Technology, Fuzhou , Fujian 350118, China
  • 2Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou , Fujian 350118, China
  • 3Fujian Provincial Precision Processing Manufacturing Engineering Research Center, Fuzhou , Fujian 350118, China
  • 4School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou , Fujian 350118, China
  • 5School of Computing, Engineering & Mathematics, University of Brighton, Brighton, BN2 4AT, England
  • show less
    DOI: 10.3788/LOP202158.0714002 Cite this Article Set citation alerts
    Qianting Wang, Xianbin Zeng, Changrong Chen, Guofu Lian, Xu Huang, Yan Wang. Morphology, Microstructure, and Mechanical Properties of Fe50-TiC Composite Laser Cladding Layer on Cr12 Mold Steel[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0714002 Copy Citation Text show less
    References

    [1] Ye D, Li S H, Li J et al. Study on the crystallographic orientation relationship and formation mechanism of reversed austenite in economical Cr12 super martensitic stainless steel[J]. Materials Characterization, 109, 100-106(2015).

    [2] Kong D J, Xie C Y. Effect of laser quenching on fatigue properties and fracture morphologies of boronized layer on Cr12MoV steel[J]. International Journal of Fatigue, 80, 391-396(2015).

    [3] Wu B Y, Liu P, Wang X Z et al. Effect of laser absorption on picosecond laser ablation of Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide[J]. Optics & Laser Technology, 101, 11-20(2018).

    [4] Botes A, Bolokang A S, Kortidis I et al. Structure-property relationship of the laser cladded medium carbon steel: the use of butter layer between the substrate and the top clad layer[J]. Surfaces and Interfaces, 14, 296-304(2019).

    [5] Courbon C, Sova A, Valiorgue F et al. Near surface transformations of stainless steel cold spray and laser cladding deposits after turning and ball-burnishing[J]. Surface and Coatings Technology, 371, 235-244(2019).

    [6] Xiong L L, Zheng H Z, Chen Z et al. Research status about materials used in laser-clad nanostructured ceramics/metal composite coatings[J]. Materials Review, 29, 24-29(2015).

    [7] Liu X, Wang W X, Cui Z Q et al. Influence of B4C content on microstructure and properties of laser cladding Fe-based ceramic composite coating[J]. Transactions of Materials and Heat Treatment, 32, 102-106(2011).

    [8] Zhao L Z, Yang H C, Zhao M J et al. In-situ TiC/FeAl composite coating fabricated by laser cladding[J]. Chinese Journal of Materials Research, 31, 860-866(2017).

    [9] Khalili A, Goodarzi M, Mojtahedi M et al. Solidification microstructure of in situ laser-synthesized Fe-TiC hard coating[J]. Surface and Coatings Technology, 307, 747-752(2016).

    [10] Emamian A, Corbin S F, Khajepour A. Effect of laser cladding process parameters on clad quality and in situ formed microstructure of Fe-TiC composite coatings[J]. Surface and Coatings Technology, 205, 2007-2015(2010).

    [11] Wang Z, Lei J B, Jiang W et al. Microstructure and properties of Fe-based TiC laser cladding coatings[J]. Materials Science and Engineering of Powder Metallurgy, 21, 43-49(2016).

    [12] Zhang H, Chong K, Zhao W et al. Effects of pulse parameters on in situ Ti-V carbides size and properties of Fe-based laser cladding layers[J]. Surface and Coatings Technology, 344, 163-169(2018).

    [13] Rafiei M, Ghayour H, Mostaan H et al. The effect of V addition on microstructure and tribological properties of Fe-Ti-C claddings produced by gas tungsten arc welding[J]. Journal of Materials Processing Technology, 266, 569-578(2019).

    [14] Li Q T, Lei Y P, Fu H G. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating[J]. Applied Surface Science, 316, 610-616(2014).

    [15] Cui G, Han B, Zhao J B et al. Comparative study on tribological properties of the sulfurizing layers on Fe, Ni and Co based laser cladding coatings[J]. Tribology International, 134, 36-49(2019).

    [16] Cao J, Lu H F, Lu J Z et al. Effects of tungsten carbide particles on microstructure and wear resistance of hot-working die prepared via laser cladding[J]. Chinese Journal of Lasers, 46, 0702001(2019).

    [17] Zhan X H, Qi C Q, Gao Z N et al. The influence of heat input on microstructure and porosity during laser cladding of Invar alloy[J]. Optics & Laser Technology, 113, 453-461(2019).

    [18] Yao S, Liu H X, Zhang X W et al. Microstructure and wear property of TiC particle reinforced composite coatings on H13 steel surface by laser in situ synthesis[J]. Chinese Journal of Lasers, 41, 1003004(2014).

    [19] Lu J Z, Cao J, Lu H F et al. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding[J]. Surface and Coatings Technology, 369, 228-237(2019).

    [20] Chi J, Li M, Wang S F et al. Effects of TiC formation modes on microstructure and performance of Ni-based laser cladding coatings[J]. China Surface Engineering, 30, 134-141(2017).

    [21] Qu C C, Li J, Juan Y F et al. Effects of the content of MoS2 on microstructural evolution and wear behaviors of the laser-clad coatings[J]. Surface and Coatings Technology, 357, 811-821(2019).

    [22] Chen J F, Li X P, Xue Y P. Friction and wear properties of laser cladding Fe901 alloy coating on 45 steel surface[J]. Chinese Journal of Lasers, 46, 0502001(2019).

    [23] Li N, Xiong Y, Xiong H P et al. Microstructure, formation mechanism and property characterization of Ti + SiC laser cladded coatings on Ti6Al4V alloy[J]. Materials Characterization, 148, 43-51(2019).

    [24] Zeinali Moghaddam H, Sharifitabar M, Roudini G. Microstructure and wear properties of Fe-TiC composite coatings produced by submerged arc cladding process using ferroalloy powder mixtures[J]. Surface and Coatings Technology, 361, 91-101(2019).

    [25] Shu D, Cui X X, Li Z G et al. Microstructure and friction and wear property of nano-WC reinforced Ni-based coating[J]. Laser & Optoelectronics Progress, 57, 211401(2020).

    [26] Yang Z X, Wang A H, Weng Z K et al. Porosity elimination and heat treatment of diode laser-clad homogeneous coating on cast aluminum-copper alloy[J]. Surface and Coatings Technology, 321, 26-35(2017).

    [27] In-situ TiC-Fe deposition on mild steel using a laser cladding process[J]. Ontario(2011).

         Emamian A, Emamian A[D]. 低碳钢表面激光原位沉积Fe50/TiC涂层研究(2011).

    Qianting Wang, Xianbin Zeng, Changrong Chen, Guofu Lian, Xu Huang, Yan Wang. Morphology, Microstructure, and Mechanical Properties of Fe50-TiC Composite Laser Cladding Layer on Cr12 Mold Steel[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0714002
    Download Citation