• Infrared and Laser Engineering
  • Vol. 48, Issue 12, 1226004 (2019)
Zhou Hongqiang*, Huang Lingling, and Wang Yongtian
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.1226004 Cite this Article
    Zhou Hongqiang, Huang Lingling, Wang Yongtian. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 2019, 48(12): 1226004 Copy Citation Text show less
    References

    [1] Simon H. A Comprehensive Foundation [M]. 2nd ed. New Jersey: Prentice Hall International, Inc, 1999.

    [2] Simon H. Machines, Neural Network and Learning[M]. 3rd ed. New Jersey: Pearson Education, Inc, 2009.

    [3] Gardner M W, Dorling S R. Artificial neural networks(the multilayer perceptron)-a review of application in the atmospheric sciences[J]. Atmospheric Environment. 1998, 32(14): 2627-2636.

    [4] Hornic K. Multilayer feedforward networks are universal approximators[J]. Neural Network, 1989, 2(5): 359-366.

    [5] Arel I, Rose D C, Karnowski T P. Deep machine learning-a new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine, 2010, 5(4): 13-18.

    [6] Qiao Fengjuan, Guo Hongli, Li Wei, et al. Research on deep learning classification based on SVM: a review[J]. Journal of Qilu University of Technology, 2018, 32(5): 39-44. (in Chinese)

    [7] Cortes C, Vapnik V. Support-vector networks [J]. Machine Learning, 1995, 20(3): 273-297.

    [8] Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.

    [9] Lecun Y, Boser B E, Denker J S, et al. Handwritten digit recognition with a back-propagation network[C]//Proc Advances in Neural Information Processing Systems, 1990: 396-404.

    [10] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[C]// Proceedings of IEEE. 1998, 86(11): 2278-2324.

    [11] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.

    [12] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [J]. arXiv Preprint, 2014, arXiv: 1406.1078.

    [13] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680.

    [14] Yoav F, David H. Unsupervised learning of distributions of binary vectors using 2 layer networks[C]//Advances in Neural Information Processing Systems, 1991, 4: 912-918.

    [15] Hinton G E, Osindero S, Teh Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.

    [16] Wang Bingrui, Lan Huiying, Chen Yunji. Programming frameworks for deep learning algorithms[J]. Big Data Research, 2018, 4(4): 56-63. (in Chinese)

    [17] Jake B. Notes on convolutional neural networks[D]. Cambridge: MIT Press, 2006.

    [18] Lecun Y, Bengio Y. Convolutional Networks for Images, Speech, and Time Series[M]. Cambridge: MIT Press, 1995.

    [19] Waibel A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1989, 37(3): 328-339.

    [20] Bottou L, Fogelman-Soubié F, Blanchet P, et al. Experiments with time delay networks and dynamic time warping for speaker independent isolated digit recognition[C]//Euro Speech: 1989, 89: 537-540.

    [21] Simard P Y, Steinkraus D, Platt J C. Best practices for convolutional neural networks applied to visual document analysis[C]//Seventh International Conference on Document Analysis and Recognition, 2003: 958-962.

    [22] Vaillant R, Monrocq C, Lecun Y. Original approach for the localization of objects in images[J]. IEEE Proceedings-Vision Image and Signal Proceeding, 1994, 141(4): 245-250.

    [23] Nowlan S, Platt J. A convolutional neural network hand tracker[C]//Advances Neural Information Processing Systems, 1995: 901-908.

    [24] Lawrence S, Giles C L, Tsoi A C, et al. Face recognition: A convolutional neural-network approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113.

    [25] Goodfellow Ian, Bengio Yoshua, Courville Aaron. Deep Learing[M]. Translated by Zhao S, Li Y, Fu T, et al. Beijing: Post and Telecom Press, 2017: 274-298. (in Chinese)

    [26] Shin H, Roth H R, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5SI): 1285-1298.

    [27] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.

    [28] Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60-88.

    [29] Esteva A, Kuprel B, Novoa R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115.

    [30] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.

    [31] Murtagh P, Tsoi A C. Implementation issues of sigmoid function and its derivative for VLSI digital neural networks[J]. IEEE Proceedings-E Computers and Digital Techniques, 1992, 139(3): 207-214.

    [32] Xu G, Wu H, Shi Y. Structural design of convolutional neural networks for steganalysis[J]. IEEE Signal Processing Letters, 2016, 23(5): 708-712.

    [33] Han J, Cho G, Kwak K. A design of convolutional neural network using ReLU-based ELM classifier and its application[C]//Proceedings of the 9th International Conference on Machine Learning and Computing, 2017.

    [34] Mirza M O S. Conditional generative adversarial nets [J]. arXiv preprint, 2014, arXiv: 1411.1784.

    [35] Radford A M L C S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint, 2015, arXiv: 1511. 06434.

    [36] Reed S, Akata Z, Yan X, et al. Generative adversarial text to image synthesis[J]. arXiv preprint, 2016, arXiv:1605.05396.

    [37] Wu J, Zhang C, Xue T, et al. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modelin [J]. arXiv preprint, 2016, arXiv:1610.07584.

    [38] Smith E, Meger D. Improved adversarial systems for 3D object generation and reconstruction[J]. arXiv preprint. 2017, arXiv: 1707.09557.

    [39] Denton E, Gross S, Fergus R. Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks[J]. arXiv preprint, 2016, arXiv: 1611.06430.

    [40] Yi Z, Zhang H, Tan P, et al. DualGAN: Unsupervised dual learning for image-to-image translation[J]. arXiv preprint, 2017, arXiv: 1704. 02510.

    [41] Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network[J]. arXiv preprint, 2017, arXiv: 1609. 04802v5.

    [42] Vondrick C, Pirsiavash H, Torralba A. Generating videos with scene dynamics[J]. arXiv preprint, 2016, arXiv: 1609.02612v3.

    [43] Perarnau G, van de Weijer J, Raducanu B, et al. Invertible conditional GANs for image editing[J]. arXiv preprint, 2016, arXiv: 1611.06355.

    [44] Antonia Creswell A A B. Inverting the generator of a generative adversarial network [J]. arXiv preprint, 2016, arXiv: 1611.05644.

    [45] Zhou S, Xiao T, Yang Y, et al. GeneGAN: learning object transfiguration and attribute subspace from unpaired data[J]. arXiv preprint, arXiv:1705.04932.

    [46] Kim T, Cha M, Kim H, et al. Learning to discover cross-domain relations with generative adversarial networks[J]. arXiv preprint, 2017, arXiv: 1703.05192.

    [47] Wang C, Wang C, Xu C, et al. Tag disentangled generative adversarial network for object image re-rendering[C]//The Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017: 2901-2907.

    [48] Antipov G, Dugelay M B J. Face aging with conditional generative adversarial networks[J]. arXiv preprint, 2017, arXiv: 1702.01983.

    [49] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN [J]. arXiv preprint, 2017, arXiv: 1701.07875.

    [50] Ando T, Horisaki R, Tanida J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26): 33902-33910.

    [51] Horisaki R, Takagi R, Tanida J. Learning based imaging through scattering media [J]. Optics Express, 2016, 24(13): 13738-13743.

    [52] Takagi R, Horisaki R, Tanida J. Object recognition through a multi-mode fiber[J]. Optical Review, 2017, 24(2): 117-120.

    [53] Horisaki R, Takagi R, Tanida J. Learning based focusing through scattering media [J]. Applied Optics, 2017, 56(15): 4358-4362.

    [54] Horisaki R, Takagi R, Tanida J. Learning based single-shot superresolution in diffractive imaging[J]. Applied Optics, 2017, 56(32): 8896-8901.

    [55] Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9): 1117-1125.

    [56] Li R, Zeng T, Peng H, et al. Deep learning segmentation of optical microscopy images improves 3-D neuron reconstruction[J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1533-1541.

    [57] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging [J]. Scientific Reports, 2017, 7: 17865.

    [58] Jo Y, Park S, Jung J, et al. Holographic deep learning for rapid optical screening of anthrax spores[J]. Science Advances, 2017, 3(8): e1700606.

    [59] Lin X, Rivenson Y, Yardimei N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361(6406): 1004.

    [60] Xiao H, Rasul K, Vollgraf R, et al. fashion-minist[EB/OL]. San Francisco: GitHub database site, 2017[2019-12-17]. https://github.com/zalandoresearch/fashion-mnist#fashion-mnist.htm.

    [61] Lecun Y, Cortes C, Burges C J C. The MNIST database of handwritten digits[EB/OL]. New York: New York University, 1998[2019-12-17]. http://yann.lecun.com/exdb/mnist.htm.

    [62] Li Jingxi, Mengu Deniz, Luo Yi, et al. Class-specific differential detection in diffractive optical neural networks improves inference accuracy[J]. Advanced Photonics, 2019, 1(4): 046001.

    [63] Huang B, Bates M, Zhuang X. Super resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 2009, 78: 993-1016.

    [64] Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935-939.

    [65] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3(3): 144-147.

    [66] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-795.

    [67] Dong C, Loy C C, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.

    [68] Rivenson Y, Gorocs Z, Gunaydin H, et al. Deep learning microscopy[J]. Optica, 2017, 4(11): 1437-1443.

    [69] Wu Y, Rivenson Y, Zhang Y, et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. Optica, 2018, 5(6): 704-710.

    [70] Rivenson Y, Zhang Y, Gnaydin H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light-Science & Applications, 2018, 7: e17141.

    [71] Huang L, Muhlenbernd H, Li X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444.

    [72] Huang L, Chen X, Muehlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

    [73] Zijlstra P, Chon J W M, Gu M. Five dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413.

    [74] Zhao R, Sain B, Wei Q, et al. Multichannel vectorial holographic display and encryption[J]. Light-Science & Applications, 2018, 7: 95.

    [75] Jiang Q, Jin G, Cao L. When metasurface meets hologram:principle and advances[J]. Advanced Optics and Photonics, 2019, 11(3): 000518.

    [76] Goodman J W. Introduction to Fourier Optics[M]. 2nd ed. Singapore: McGraw-Hill, 1996: 66-67.

    [77] Schnars U, Falldorf C, Watson J, et al. Digital Holography and Wavefront Sensing: Principles, Techniques and Applications[M]. Berlin: Springer, 2015.

    [78] Ren Z, Xu Z, Lam E Y. Learning-based nonparametric autofocusing or digital holography[J]. Optica, 2018, 5(4): 337-344.

    [79] Slinger C, Cameron C, Stanley M. Computer-generated holography as a generic display technology[J]. Computer, 2005, 38(8): 46-53.

    [80] Horisaki R, Takagi R, Tanida J. Deep-learning-generated holography[J]. Applied Optics, 2018, 57(14): 3859-3863.

    [81] Pfeiffer C, Grbic A. Metamaterial huygens′ surfaces:tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401.

    [82] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 190-937.

    [83] Butet J, Brevet P, Martin O J F. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications[J]. ACS Nano, 2015, 9(11): 10545-10562.

    [84] Li G, Chen S, Pholchai N, et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 2015, 14(6): 607-612.

    [85] Malkiel I, Mrejen M, Nagler A, et al. Plasmonic nanostructure design and characterization via deep learning[J]. Light-Science & Applications, 2018, 7: 60.

    [86] Liu D, Tan Y, Khoram E, et al. Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics, 2018, 5(4): 1365-1369.

    [87] Ma W, Cheng F, Liu Y. Deep learning enabled on-demand design of chiral metamaterials[J]. ACS Nano, 2018, 12(6): 6326-6334.

    [88] Peurifoy J, Shen Y, Jing L, et al. Nanophotonic particle simulation and inverse design using artificial neural networks[J]. Science Advances, 2018, 4(6): aar4206.

    [89] Liu Z, Zhu D, Rodrigues S P, et al. Generative model for the inverse design of metasurfaces[J]. Nano Letters, 2018, 18(10): 6570-6576.

    [90] Tahersima M H, Kojima K, Koike-Akino T, et al. Deep neural network inverse design of integrated photonic power splitters[J]. Scientific Reports, 2019, 9: 1368.

    [91] Yao K, Unni R, Zheng Y. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale[J]. Nanophotonics, 2019, 8(3): 339-366.

    [92] Su L, Piggott A Y, Sapra N V, et al. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer[J]. ACS Photonics, 2018, 5(2): 301-305.

    [93] Piggott A Y, Lu J, Babinec T M, et al. Inverse design and implementation of a wavelength demultiplexing grating coupler[J]. Scientific Reports, 2014, 4: 7210.

    [94] Molesky S, Lin Z, Piggott A Y, et al. Inverse design in nanophotonics[J]. Nature Photonics, 2018, 12(11): 659-670.

    [95] Lan L, Sun F, Liu Y, et al. Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization[J]. Applied Physics Letters, 2013, 103(12): 121113.

    [96] Fujii G, Watanabe H, Yamada T, et al. Level set based topology optimization for optical cloaks[J]. Applied Physics Letters, 2013, 102(25): 251106.

    [97] Sell D, Yang J, Doshay S, et al. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities[J]. Advanced Optical Materials, 2017, 5(23): 00645.

    [98] Deng Y, Korvink J G. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method[C]//Proceedings of the Royal Society A-mathematical physical and engineering sciences, 2016, 472(2189): 20150835.

    [99] Andkjaer J, Sigmund O. Topology optimized low-contrast all-dielectric optical cloak[J]. Applied Physics Letters, 2011, 98(2): 021112.

    [100] Lin Z, Groever B, Capasso F, et al. Topology-optimized multilayered metaoptics[J]. Physical Review Applied, 2018, 9(4): 044030.

    [101] Yin Baocai, Wang Wentong, Wang Litong. Review of deep learning [J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. (in Chinese)

    [102] Barbastathis George, Ozcan Aydogan, Situ Guohai, On the use of deep learning for computational imaging[J]. Optica, 2019, 6(8): 921-943.

    CLP Journals

    [1] Fangli Li. Anomaly detection based on deep support vector data description under surveillance scenarios[J]. Infrared and Laser Engineering, 2021, 50(9): 20210094

    [2] Shuhan Yao, Li Guan. Atmospheric temperature and humidity profile retrievals using a machine learning algorithm based on satellite-based infrared hyperspectral observations[J]. Infrared and Laser Engineering, 2022, 51(8): 20210707

    [3] Yutong Liu, Yan Li, Lu Jin, Huaxu Tang, Shun Wang, Yucong Wu, Yueshu Feng. System design of multi-resolution microscopic correlation imaging based on deep learning[J]. Infrared and Laser Engineering, 2023, 52(4): 20220461

    [4] Jinpeng Liu, Yi Feng, Lei Liu, Meng Xiang, Fei Liu, Xiaopeng Shao. Research and application progress of holography technology in scattering imaging (invited)[J]. Infrared and Laser Engineering, 2022, 51(8): 20220307

    [5] Xiaoduo Jiang, Xiaochen Zhao, Tianyi Mao, Weiji He, Qian Chen. Single-photon LiDAR imaging method based on sensor fusion network[J]. Infrared and Laser Engineering, 2022, 51(2): 20210871

    [6] Xu Zhang, Mingxin Yu, Lianqing Zhu, Yanlin He, Guangkai Sun. Raman mineral recognition method based on all-optical diffraction deep neural network[J]. Infrared and Laser Engineering, 2020, 49(10): 20200221

    [7] Zhou Fang, Xiangxiang Xu, Xin Li, Jinlong Liu, Huizhen Yang, Chenglong Gong. SPGD algorithm with adaptive gain[J]. Infrared and Laser Engineering, 2020, 49(10): 20200274

    [8] Yunpeng Liu, Xiaoli Huo, Zhichao Liu. Optical fiber network abnormal data detection algorithm based on deep learning[J]. Infrared and Laser Engineering, 2021, 50(6): 20210029

    Zhou Hongqiang, Huang Lingling, Wang Yongtian. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 2019, 48(12): 1226004
    Download Citation