• High Power Laser Science and Engineering
  • Vol. 11, Issue 4, 04000e47 (2023)
Duo Jin1、2, Zhenxu Bai1、2、3、*, Zhongan Zhao1、2, Yifu Chen1、2, Wenqiang Fan1、2, Yulei Wang1、2、*, Richard P. Mildren3, and Zhiwei Lü1、2、*
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
  • 3MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, Australia
  • show less
    DOI: 10.1017/hpl.2023.48 Cite this Article Set citation alerts
    Duo Jin, Zhenxu Bai, Zhongan Zhao, Yifu Chen, Wenqiang Fan, Yulei Wang, Richard P. Mildren, Zhiwei Lü. Linewidth narrowing in free-space-running diamond Brillouin lasers[J]. High Power Laser Science and Engineering, 2023, 11(4): 04000e47 Copy Citation Text show less

    Abstract

    This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously. The results show that the Stokes linewidth behavior in a free-space-running Brillouin laser cavity is determined by the phase diffusion of the pump and the technical noise of the system. Experimentally, a Stokes light output with a power of 22.5 W and a linewidth of 3.2 kHz was obtained at a coupling mirror reflectivity of 96%, which is nearly 2.5 times compressed compared with the linewidth of the pump (7.36 kHz). In addition, the theorical analysis shows that at a pump power of 60 W and a coupling mirror reflectivity of 96%, a Stokes output with a linewidth of 1.6 kHz and up to 80% optical conversion efficiency can be achieved by reducing the insertion loss of the intracavity. This study provides a promising technical route to achieve high-power ultra-narrow linewidth special wavelength laser radiations.
    $$\begin{align}\Delta {v}_{\mathrm{S}}=\left(1+{\alpha}^2\right){\left(\frac{\Gamma}{\gamma +\Gamma}\right)}^2\frac{\mathrm{\hslash}{\omega}_S^3{n}_{\mathrm{th}}}{4\pi {Q}_{\mathrm{L}}{Q}_{\mathrm{ex}}{P}_{\mathrm{S}\mathrm{out}}}+{\left(\frac{\gamma }{\gamma +\Gamma}\right)}^2\Delta {v}_{\mathrm{P}}.\end{align}$$ ((1))

    View in Article

    $$\begin{align}S={S}_1\times {S}_2+{S}_3;\end{align}$$ ((2a))

    View in Article

    $$\begin{align}{S}_1=\frac{P_0^2}{4\pi}\frac{\Delta f}{\Delta {f}^2+{\left(f-{f}_1\right)}^2};\end{align}$$ ((2b))

    View in Article

    $$\begin{align}{S}_2 =1-\exp \left(-2{\pi \tau}_{\mathrm{d}}\Delta f\right)\left(\vphantom{\frac{\sin 2{\pi \tau}_{\mathrm{d}}\left(f-{f}_1\right)}{f-{f}_1}}\cos \left(2{\pi \tau}_\mathrm{d}\left(f-{f}_1\right)\right)\right.\nonumber\\ \left. +\Delta f\frac{\sin 2{\pi \tau}_{\mathrm{d}}\left(f-{f}_1\right)}{f-{f}_1}\right);\end{align}$$ ((2c))

    View in Article

    $$\begin{align}{S}_3=\frac{\pi {P}_0^2}{2}\exp \left(-2{\pi \tau}_{\mathrm{d}}\Delta f\right)\delta \left(f-{f}_1\right).\end{align}$$ ((2d))

    View in Article

    $$\begin{align}\begin{array}{l}\Delta S\left(\Delta f\right)=S\left(m=1\right)-S\left(m=0\right)\\ {}=10{\log}_{10}\frac{\left(\Delta {f}^2+{\left(\frac{c}{2 nL}\right)}^2\right)\left(1+\exp \left(-\frac{2\pi nL}{c}\Delta f\right)\right)}{\left(\Delta {f}^2+{\left(\frac{3c}{2 nL}\right)}^2\right)\left(1-\exp \left(-\frac{2\pi nL}{c}\Delta f\right)\right)}.\end{array}\end{align}$$ ((3))

    View in Article

    Duo Jin, Zhenxu Bai, Zhongan Zhao, Yifu Chen, Wenqiang Fan, Yulei Wang, Richard P. Mildren, Zhiwei Lü. Linewidth narrowing in free-space-running diamond Brillouin lasers[J]. High Power Laser Science and Engineering, 2023, 11(4): 04000e47
    Download Citation